Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-17T16:35:01.135Z Has data issue: false hasContentIssue false

Protein kinase inhibitors: contributions from structure to clinical compounds

Published online by Cambridge University Press:  19 March 2009

Louise N. Johnson*
Affiliation:
Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK
*
*Author for correspondence: L. N. Johnson, Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. Tel.: +44 1865 613200; Fax: +44 1865 613201; Email: louise.johnson@bioch.ox.ac.uk

Abstract

Protein kinases catalyse key phosphorylation reactions in signalling cascades that affect every aspect of cell growth, differentiation and metabolism. The kinases have become prime targets for drug intervention in the diseased state, especially in cancer. There are currently 10 drugs that have been approved for clinical use and many more in clinical trials. This review summarises the structural basis for protein kinase inhibition and discusses the mode of action for each of the approved drugs in the light of structural results. All but one of the approved compounds target the ATP binding site on the kinase. Both the active and inactive conformations of protein kinases have been used in strategies to produce potent and selective compounds. Targeting the inactive conformation can give high specificity. Targeting the active conformation is favourable where the diseased state has arisen from activating mutations, but such inhibitors generally target several protein kinases. Drug resistance mutations are a potential risk for both conformational states, where drug-binding regions are not directly involved in catalysis. Imatinib (Glivec), the most successful of protein kinase inhibitors, targets the inactive conformation of ABL tyrosine kinase. Newer compounds, such as dasatinib, which targets the ABL active state, have been developed to increase potency and have proved effective for some, but not all, drug-resistant mutations. The first epidermal growth factor receptor (EGFR) inhibitors in clinical use [gefitinib (Iressa) and erlotinib (Tarceva)] targeted the active form of the kinase, and this proved advantageous for patients whose cancer was caused by mutations that resulted in a constitutively active EGFR kinase domain. Newer approved compounds, such as lapatinib (Tykerb), target the inactive conformation with high potency. A further compound that forms a covalent attachment to the kinase has been found to overcome one of the major drug resistance mutations, where the effectiveness of the drug in vivo is dependent on its ability to compete successfully in the presence of cellular concentrations of ATP. Inhibitors of vascular endothelial growth factor receptor (VEGFR) kinase against cancer angiogenesis show the advantage of some relaxation in specificity. Sorafenib, originally developed as RAF inhibitor, is now in clinical use as a VEGFR inhibitor. Temsirolimus (a derivative of rapamycin) is the only example of a drug in clinical use that does not target the kinase ATP site. Instead rapamycin, when in complex with the protein FKBP12, effectively targets mTOR kinase at a site located on a domain, the FRB domain, that appears to be involved in localisation or substrate docking.

Type
Review Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7. References

Azam, M., Latek, R. R. & Daley, G. Q. (2003). Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112(6), 831843.CrossRefGoogle ScholarPubMed
Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., Klevernic, I., Arthur, J. S., Alessi, D. R. & Cohen, P. (2007). The selectivity of protein kinase inhibitors: a further update. Biochemical Journal 408(3), 297315.CrossRefGoogle ScholarPubMed
Banaszynski, L. A., Liu, C. W. & Wandless, T. J. (2005). Characterization of the FKBP–rapamycin–FRB ternary complex. Journal of the American Chemical Society 127(13), 47154721.CrossRefGoogle ScholarPubMed
Bantscheff, M., Eberhard, D., Abraham, Y., Bastuck, S., Boesche, M., Hobson, S., Mathieson, T., Perrin, J., Raida, M., Rau, C., Reader, V., Sweetman, G., Bauer, A., Bouwmeester, T., Hopf, C., Kruse, U., Neubauer, G., Ramsden, N., Rick, J., Kuster, B. & Drewes, G. (2007). Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnology 25(9), 10351044.CrossRefGoogle ScholarPubMed
Barker, A. J., Gibson, K. H., Grundy, W., Godfrey, A. A., Barlow, J. J., Healy, M. P., Woodburn, J. R., Ashton, S. E., Curry, B. J., Scarlett, L., Henthorn, L. & Richards, L. (2001). Studies leading to the identification of ZD1839 (IRESSA): an orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer. Bioorganic & Medicinal Chemistry Letters 11(14), 19111914.CrossRefGoogle Scholar
Barnett, S. F., Defeo-Jones, D., Fu, S., Hancock, P. J., Haskell, K. M., Jones, R. E., Kahana, J. A., Kral, A. M., Leander, K., Lee, L. L., Malinowski, J., McAvoy, E. M., Nahas, D. D., Robinson, R. G. & Huber, H. E. (2005). Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochemical Journal 385(Pt 2), 399408.CrossRefGoogle ScholarPubMed
Baumli, S., Lolli, G., Lowe, E. D., Troiani, S., Rusconi, L., Bullock, A. N., Debreczeni, J. E., Knapp, S. & Johnson, L. N. (2008). The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO Journal 27(13), 19071918.CrossRefGoogle ScholarPubMed
Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. (2003). Cdk2 knockout mice are viable. Current Biology 13(20), 17751785.CrossRefGoogle ScholarPubMed
Bettayeb, K., Oumata, N., Echalier, A., Ferandin, Y., Endicott, J. A., Galons, H. & Meijer, L. (2008). CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 27(44), 57975807.CrossRefGoogle ScholarPubMed
Bierer, B. E., Mattila, P. S., Standaert, R. F., Herzenberg, L. A., Burakoff, S. J., Crabtree, G. & Schreiber, S. L. (1990). Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proceedings of the National Academy of Sciences USA 87(23), 92319235.CrossRefGoogle ScholarPubMed
Breitenlechner, C., Gassel, M., Hidaka, H., Kinzel, V., Huber, R., Engh, R. A. & Bossemeyer, D. (2003). Protein kinase A in complex with Rho-kinase inhibitors Y-27632, Fasudil, and H-1152P: structural basis of selectivity. Structure 11(12), 15951607.CrossRefGoogle ScholarPubMed
Byrd, J. C., Lin, T. S., Dalton, J. T., Wu, D., Phelps, M. A., Fischer, B., Moran, M., Blum, K. A., Rovin, B., Brooker-McEldowney, M., Broering, S., Schaaf, L. J., Johnson, A. J., Lucas, D. M., Heerema, N. A., Lozanski, G., Young, D. C., Suarez, J. R., Colevas, A. D. & Grever, M. R. (2007). Flavopiridol administered using a pharmacologically derived schedule is associated with marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic leukemia. Blood 109(2), 399404.CrossRefGoogle ScholarPubMed
Chan, S. K., Gullick, W. J. & Hill, M. E. (2006). Mutations of the epidermal growth factor receptor in non-small cell lung cancer – search and destroy. European Journal of Cancer 42(1), 1723.CrossRefGoogle ScholarPubMed
Chao, S. H., Fujinaga, K., Marion, J. E., Taube, R., Sausville, E. A., Senderowicz, A. M., Peterlin, B. M. & Price, D. H. (2000). Flavopiridol inhibits P-TEFb and blocks HIV-1 replication. Journal of Biological Chemistry 275(37), 2834528348.CrossRefGoogle ScholarPubMed
Chen, J. & Fang, Y. (2002). A novel pathway regulating the mammalian target of rapamycin (mTOR) signaling. Biochemical Pharmacology 64(7), 10711077.CrossRefGoogle ScholarPubMed
Cho, H. S., Mason, K., Ramyar, K. X., Stanley, A. M., Gabelli, S. B., Denney, D. W. Jr. & Leahy, D. J. (2003). Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 421(6924), 756760.CrossRefGoogle ScholarPubMed
Choi, J., Chen, J., Schreiber, S. L. & Clardy, J. (1996). Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 273(5272), 239242.CrossRefGoogle ScholarPubMed
Cohen, P. (2002). Protein kinases – the major drug targets of the twenty-first century? Nature Reviews Drug Discovery 1(4), 309315.CrossRefGoogle ScholarPubMed
Costa, L. J. & Drabkin, H. A. (2007). Renal cell carcinoma: new developments in molecular biology and potential for targeted therapies. Oncologist 12(12), 14041415.CrossRefGoogle ScholarPubMed
Davies, S. P., Reddy, H., Caivano, M. & Cohen, P. (2000). Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochemical Journal 351(Pt 1), 95105.CrossRefGoogle ScholarPubMed
Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R. & Futreal, P. A. (2002a). Mutations of the BRAF gene in human cancer. Nature 417(6892), 949954.CrossRefGoogle ScholarPubMed
Davies, T. G., Pratt, D. J., Endicott, J. A., Johnson, L. N. & Noble, M. E. (2002b). Structure-based design of cyclin-dependent kinase inhibitors. Pharmacology & Therapeutics 93(2–3), 125133.CrossRefGoogle ScholarPubMed
De Azevedo, W. F. Jr., Mueller-Dieckmann, H. J., Schulze-Gahmen, U., Worland, P. J., Sausville, E. & Kim, S. H. (1996). Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proceedings of the National Academy of Sciences USA 93(7), 27352740.CrossRefGoogle ScholarPubMed
Druker, B. J., Tamura, S., Buchdunger, E., Ohno, S., Segal, G. M., Fanning, S., Zimmermann, J. & Lydon, N. B. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Medicine 2(5), 561566.CrossRefGoogle ScholarPubMed
Engel, M., Hindie, V., Lopez-Garcia, L. A., Stroba, A., Schaeffer, F., Adrian, I., Imig, J., Idrissova, L., Nastainczyk, W., Zeuzem, S., Alzari, P. M., Hartmann, R. W., Piiper, A. & Biondi, R. M. (2006). Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO Journal 25(23), 54695480.CrossRefGoogle ScholarPubMed
Fabbro, D., Ruetz, S., Buchdunger, E., Cowan-Jacob, S. W., Fendrich, G., Liebetanz, J., Mestan, J., O'Reilly, T., Traxler, P., Chaudhuri, B., Fretz, H., Zimmermann, J., Meyer, T., Caravatti, G., Furet, P. & Manley, P. W. (2002). Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacology & Therapeutics 93(2–3), 7998.CrossRefGoogle ScholarPubMed
Fabian, M. A., Biggs, W. H. 3rd, Treiber, D. K., Atteridge, C. E., Azimioara, M. D., Benedetti, M. G., Carter, T. A., Ciceri, P., Edeen, P. T., Floyd, M., Ford, J. M., Galvin, M., Gerlach, J. L., Grotzfeld, R. M., Herrgard, S., Insko, D. E., Insko, M. A., Lai, A. G., Lelias, J. M., Mehta, S. A., Milanov, Z. V., Velasco, A. M., Wodicka, L. M., Patel, H. K., Zarrinkar, P. P. & Lockhart, D. J. (2005). A small molecule-kinase interaction map for clinical kinase inhibitors. Nature Biotechnology 23(3), 329336.CrossRefGoogle ScholarPubMed
Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. & Chen, J. (2001). Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294(5548), 19421945.CrossRefGoogle ScholarPubMed
Fedorov, O., Marsden, B., Pogacic, V., Rellos, P., Muller, S., Bullock, A. N., Schwaller, J., Sundstrom, M. & Knapp, S. (2007a). A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proceedings of the National Academy of Sciences USA 104(51), 2052320528.CrossRefGoogle ScholarPubMed
Fedorov, O., Sundstrom, M., Marsden, B. & Knapp, S. (2007b). Insights for the development of specific kinase inhibitors by targeted structural genomics. Drug Discovery Today 12(9–10), 365372.CrossRefGoogle ScholarPubMed
Fornier, M. N., Rathkopf, D., Shah, M., Patil, S., O'Reilly, E., Tse, A. N., Hudis, C., Lefkowitz, R., Kelsen, D. P. & Schwartz, G. K. (2007). Phase I dose-finding study of weekly docetaxel followed by flavopiridol for patients with advanced solid tumors. Clinical Cancer Research 13(19), 58415846.CrossRefGoogle ScholarPubMed
Foster, D. A. (2007). Regulation of mTOR by phosphatidic acid? Cancer Research 67(1), 14.CrossRefGoogle ScholarPubMed
Fry, D. W., Harvey, P. J., Keller, P. R., Elliott, W. L., Meade, M., Trachet, E., Albassam, M., Zheng, X., Leopold, W. R., Pryer, N. K. & Toogood, P. L. (2004). Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Molecular Cancer Therapeutics 3(11), 14271438.CrossRefGoogle ScholarPubMed
Fuh, G., Wu, P., Liang, W. C., Ultsch, M., Lee, C. V., Moffat, B. & Wiesmann, C. (2006). Structure–function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab. Journal of Biological Chemistry 281(10), 66256631.CrossRefGoogle ScholarPubMed
Geyer, C. E., Forster, J., Lindquist, D., Chan, S., Romieu, C. G., Pienkowski, T., Jagiello-Gruszfeld, A., Crown, J., Chan, A., Kaufman, B., Skarlos, D., Campone, M., Davidson, N., Berger, M., Oliva, C., Rubin, S. D., Stein, S. & Cameron, D. (2006). Lapatinib plus capecitabine for HER2-positive advanced breast cancer. New England Journal of Medicine 355(26), 27332743.CrossRefGoogle ScholarPubMed
Giles, F. J., Cortes, J., Jones, D., Bergstrom, D., Kantarjian, H. & Freedman, S. J. (2007). MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109(2), 500502.CrossRefGoogle ScholarPubMed
Gill, A. L., Verdonk, M., Boyle, R. G. & Taylor, R. (2007). A comparison of physicochemical property profiles of marketed oral drugs and orally bioavailable anti-cancer protein kinase inhibitors in clinical development. Current Topics in Medicinal Chemistry 7(14), 14081422.Google ScholarPubMed
Gnarra, J. R., Zhou, S., Merrill, M. J., Wagner, J. R., Krumm, A., Papavassiliou, E., Oldfield, E. H., Klausner, R. D. & Linehan, W. M. (1996). Post-transcriptional regulation of vascular endothelial growth factor mRNA by the product of the VHL tumor suppressor gene. Proceedings of the National Academy of Sciences USA 93(20), 1058910594.CrossRefGoogle ScholarPubMed
Gomez, H. L., Doval, D. C., Chavez, M. A., Ang, P. C., Aziz, Z., Nag, S., Ng, C., Franco, S. X., Chow, L. W., Arbushites, M. C., Casey, M. A., Berger, M. S., Stein, S. H. & Sledge, G. W. (2008). Efficacy and safety of lapatinib as first-line therapy for ErbB2-amplified locally advanced or metastatic breast cancer. Journal of Clinical Oncology 26(18), 29993005.CrossRefGoogle ScholarPubMed
Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., Davies, H., Teague, J., Butler, A., Stevens, C., Edkins, S., O'Meara, S., Vastrik, I., Schmidt, E. E., Avis, T., Barthorpe, S., Bhamra, G., Buck, G., Choudhury, B., Clements, J., Cole, J., Dicks, E., Forbes, S., Gray, K., Halliday, K., Harrison, R., Hills, K., Hinton, J., Jenkinson, A., Jones, D., Menzies, A., Mironenko, T., Perry, J., Raine, K., Richardson, D., Shepherd, R., Small, A., Tofts, C., Varian, J., Webb, T., West, S., Widaa, S., Yates, A., Cahill, D. P., Louis, D. N., Goldstraw, P., Nicholson, A. G., Brasseur, F., Looijenga, L., Weber, B. L., Chiew, Y. E., Defazio, A., Greaves, M. F., Green, A. R., Campbell, P., Birney, E., Easton, D. F., Chenevix-Trench, G., Tan, M. H., Khoo, S. K., Teh, B. T., Yuen, S. T., Leung, S. Y., Wooster, R., Futreal, P. A. & Stratton, M. R. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446(7132), 153158.CrossRefGoogle ScholarPubMed
Hall-Jackson, C. A., Eyers, P. A., Cohen, P., Goedert, M., Boyle, F. T., Hewitt, N., Plant, H. & Hedge, P. (1999). Paradoxical activation of Raf by a novel Raf inhibitor. Chemistry & Biology 6(8), 559568.CrossRefGoogle ScholarPubMed
Hantschel, O., Rix, U. & Superti-Furga, G. (2008). Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leukemia and Lymphoma 49(4), 615619.CrossRefGoogle ScholarPubMed
Hudes, G., Carducci, M., Tomczak, P., Dutcher, J., Figlin, R., Kapoor, A., Staroslawska, E., Sosman, J., McDermott, D., Bodrogi, I., Kovacevic, Z., Lesovoy, V., Schmidt-Wolf, I. G., Barbarash, O., Gokmen, E., O'Toole, T., Lustgarten, S., Moore, L. & Motzer, R. J. (2007). Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. New England Journal of Medicine 356(22), 22712281.CrossRefGoogle ScholarPubMed
Huse, M. & Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell 109(3), 275282.CrossRefGoogle ScholarPubMed
Jacobs, M., Hayakawa, K., Swenson, L., Bellon, S., Fleming, M., Taslimi, P. & Doran, J. (2006). The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. Journal of Biological Chemistry 281(1), 260268.CrossRefGoogle Scholar
Johnson, L. N. & Lewis, R. J. (2001). Structural basis for control by phosphorylation. Chemical Reviews 101(8), 22092242.CrossRefGoogle ScholarPubMed
Johnson, L. N., Noble, M. E. & Owen, D. J. (1996). Active and inactive protein kinases: structural basis for regulation. Cell 85(2), 149158.CrossRefGoogle ScholarPubMed
Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., Chan, K. W., Ciceri, P., Davis, M. I., Edeen, P. T., Faraoni, R., Floyd, M., Hunt, J. P., Lockhart, D. J., Milanov, Z. V., Morrison, M. J., Pallares, G., Patel, H. K., Pritchard, S., Wodicka, L. M. & Zarrinkar, P. P. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology 26(1), 127132.CrossRefGoogle ScholarPubMed
Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Ashford, V. A., Xuong, N. H., Taylor, S. S. & Sowadski, J. M. (1991a). Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018), 407414.CrossRefGoogle ScholarPubMed
Knighton, D. R., Zheng, J. H., Ten Eyck, L. F., Xuong, N. H., Taylor, S. S. & Sowadski, J. M. (1991b). Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018), 414420.CrossRefGoogle Scholar
Kontopidis, G., Andrews, M. J., McInnes, C., Cowan, A., Powers, H., Innes, L., Plater, A., Griffiths, G., Paterson, D., Zheleva, D. I., Lane, D. P., Green, S., Walkinshaw, M. D. & Fischer, P. M. (2003). Insights into cyclin groove recognition: complex crystal structures and inhibitor design through ligand exchange. Structure 11(12), 15371546.CrossRefGoogle ScholarPubMed
Kornev, A. P., Haste, N. M., Taylor, S. S. & Eyck, L. F. (2006). Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proceedings of the National Academy of Sciences USA 103(47), 1778317788.CrossRefGoogle ScholarPubMed
Kumar, A., Petri, E. T., Halmos, B. & Boggon, T. J. (2008). Structure and clinical relevance of the epidermal growth factor receptor in human cancer. Journal of Clinical Oncology 26(10), 17421751.CrossRefGoogle ScholarPubMed
La, D. S., Belzile, J., Bready, J. V., Coxon, A., Demelfi, T., Doerr, N., Estrada, J., Flynn, J. C., Flynn, S. R., Graceffa, R. F., Harriman, S. P., Larrow, J. F., Long, A. M., Martin, M. W., Morrison, M. J., Patel, V. F., Roveto, P. M., Wang, L., Weiss, M. M., Whittington, D. A., Teffera, Y., Zhao, Z., Polverino, A. J. & Harmange, J. C. (2008). Novel 2,3-dihydro-1,4-benzoxazines as potent and orally bioavailable inhibitors of tumor-driven angiogenesis. Journal of Medicinal Chemistry 51(6), 16951705.CrossRefGoogle Scholar
Lacouture, M. E., Desai, A., Soltani, K., Petronic-Rosic, V., Laumann, A. E., Ratain, M. J. & Stadler, W. M. (2006). Inflammation of actinic keratoses subsequent to therapy with sorafenib, a multitargeted tyrosine-kinase inhibitor. Clinical and Experimental Dermatology 31(6), 783785.CrossRefGoogle ScholarPubMed
Landis, M. W., Pawlyk, B. S., Li, T., Sicinski, P. & Hinds, P. W. (2006). Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9(1), 1322.CrossRefGoogle ScholarPubMed
Laudet, B., Barette, C., Dulery, V., Renaudet, O., Dumy, P., Metz, A., Prudent, R., Deshiere, A., Dideberg, O., Filhol, O. & Cochet, C. (2007). Structure-based design of small peptide inhibitors of protein kinase CK2 subunit interaction. Biochemical Journal 408(3), 363373.CrossRefGoogle ScholarPubMed
Laurent-Puig, P. & Taieb, J. (2008). Lessons from Tarceva in pancreatic cancer: where are we now, and how should future trials be designed in pancreatic cancer? Current Opinion in Oncology 20(4), 454458.CrossRefGoogle ScholarPubMed
Le Coutre, P., Ottmann, O. G., Giles, F., Kim, D. W., Cortes, J., Gattermann, N., Apperley, J. F., Larson, R. A., Abruzzese, E., O'Brien, S. G., Kuliczkowski, K., Hochhaus, A., Mahon, F. X., Saglio, G., Gobbi, M., Kwong, Y. L., Baccarani, M., Hughes, T., Martinelli, G., Radich, J. P., Zheng, M., Shou, Y. & Kantarjian, H. (2008). Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood 111(4), 18341839.CrossRefGoogle ScholarPubMed
Leroy, D. & Doerig, C. (2008). Drugging the Plasmodium kinome: the benefits of academia-industry synergy. Trends in Pharmacological Sciences 29(5), 241249.CrossRefGoogle ScholarPubMed
Li, S., Schmitz, K. R., Jeffrey, P. D., Wiltzius, J. J., Kussie, P. & Ferguson, K. M. (2005). Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7(4), 301311.CrossRefGoogle ScholarPubMed
Liang, J., Choi, J. & Clardy, J. (1999). Refined structure of the FKBP12-rapamycin-FRB ternary complex at 2·2 A resolution. Acta Crystallographica. Section D, Biological Crystallography 55(Pt 4), 736744.CrossRefGoogle ScholarPubMed
Liao, J. J. (2007). Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. Journal of Medicinal Chemistry 50(3), 409424.CrossRefGoogle ScholarPubMed
Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods 44(1), 235249.CrossRefGoogle ScholarPubMed
Liu, Y. & Gray, N. S. (2006). Rational design of inhibitors that bind to inactive kinase conformations. Nature Chemical Biology 2(7), 358364.CrossRefGoogle ScholarPubMed
Lu, H. & Schulze-Gahmen, U. (2006). Toward understanding the structural basis of cyclin-dependent kinase 6 specific inhibition. Journal of Medicinal Chemistry 49(13), 38263831.CrossRefGoogle ScholarPubMed
Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J. & Haber, D. A. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine 350(21), 21292139.CrossRefGoogle ScholarPubMed
Malumbres, M., Pevarello, P., Barbacid, M. & Bischoff, J. R. (2008). CDK inhibitors in cancer therapy: what is next? Trends in Pharmacological Sciences 29(1), 1621.CrossRefGoogle ScholarPubMed
Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science 298(5600), 19121934.CrossRefGoogle ScholarPubMed
Marone, R., Cmiljanovic, V., Giese, B. & Wymann, M. P. (2008). Targeting phosphoinositide 3-kinase: moving towards therapy. Biochimica Biophysica Acta 1784(1), 159185.CrossRefGoogle ScholarPubMed
Marsden, B. D. & Knapp, S. (2008). Doing more than just the structure–structural genomics in kinase drug discovery. Current Opinion in Chemical Biology 12(1), 4045.CrossRefGoogle ScholarPubMed
McInnes, C., Andrews, M. J., Zheleva, D. I., Lane, D. P. & Fischer, P. M. (2003). Peptidomimetic design of CDK inhibitors targeting the recruitment site of the cyclin subunit. Current Medicinal Chemistry. Anti-Cancer Agents 3(1), 5769.Google ScholarPubMed
Mendel, D. B., Laird, A. D., Xin, X., Louie, S. G., Christensen, J. G., Li, G., Schreck, R. E., Abrams, T. J., Ngai, T. J., Lee, L. B., Murray, L. J., Carver, J., Chan, E., Moss, K. G., Haznedar, J. O., Sukbuntherng, J., Blake, R. A., Sun, L., Tang, C., Miller, T., Shirazian, S., McMahon, G. & Cherrington, J. M. (2003). In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clinical Cancer Research 9(1), 327337.Google ScholarPubMed
Menu, E., Garcia, J., Huang, X., Di Liberto, M., Toogood, P. L., Chen, I., Vanderkerken, K. & Chen-Kiang, S. (2008). A novel therapeutic combination using PD 0332991 and bortezomib: study in the 5T33MM myeloma model. Cancer Research 68(14), 55195523.CrossRefGoogle ScholarPubMed
Milano, G., Spano, J. P. & Leyland-Jones, B. (2008). EGFR-targeting drugs in combination with cytotoxic agents: from bench to bedside, a contrasted reality. British Journal of Cancer 99(1), 15.CrossRefGoogle ScholarPubMed
Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., Hubbard, S. R. & Schlessinger, J. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276(5314), 955960.CrossRefGoogle ScholarPubMed
Mol, C. D., Dougan, D. R., Schneider, T. R., Skene, R. J., Kraus, M. L., Scheibe, D. N., Snell, G. P., Zou, H., Sang, B. C. & Wilson, K. P. (2004). Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. Journal of Biological Chemistry 279(30), 3165531663.CrossRefGoogle ScholarPubMed
Mol, C. D., Lim, K. B., Sridhar, V., Zou, H., Chien, E. Y., Sang, B. C., Nowakowski, J., Kassel, D. B., Cronin, C. N. & McRee, D. E. (2003). Structure of a c-kit product complex reveals the basis for kinase transactivation. Journal of Biological Chemistry 278(34), 3146131464.CrossRefGoogle ScholarPubMed
Motzer, R. J., Michaelson, M. D., Redman, B. G., Hudes, G. R., Wilding, G., Figlin, R. A., Ginsberg, M. S., Kim, S. T., Baum, C. M., Deprimo, S. E., Li, J. Z., Bello, C. L., Theuer, C. P., George, D. J. & Rini, B. I. (2006). Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology 24(1), 1624.CrossRefGoogle ScholarPubMed
Motzer, R. J., Michaelson, M. D., Rosenberg, J., Bukowski, R. M., Curti, B. D., George, D. J., Hudes, G. R., Redman, B. G., Margolin, K. A. & Wilding, G. (2007). Sunitinib efficacy against advanced renal cell carcinoma. The Journal of Urology 178(5), 18831887.CrossRefGoogle ScholarPubMed
Moyer, J. D., Barbacci, E. G., Iwata, K. K., Arnold, L., Boman, B., Cunningham, A., Diorio, C., Doty, J., Morin, M. J., Moyer, M. P., Neveu, M., Pollack, V. A., Pustilnik, L. R., Reynolds, M. M., Sloan, D., Theleman, A. & Miller, P. (1997). Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Research 57(21), 48384848.Google ScholarPubMed
Nagar, B., Bornmann, W. G., Pellicena, P., Schindler, T., Veach, D. R., Miller, W. T., Clarkson, B. & Kuriyan, J. (2002). Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Research 62(15), 42364243.Google ScholarPubMed
Nagar, B., Hantschel, O., Young, M. A., Scheffzek, K., Veach, D., Bornmann, W., Clarkson, B., Superti-Furga, G. & Kuriyan, J. (2003). Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112(6), 859871.CrossRefGoogle ScholarPubMed
Nicholson, R. I., Gee, J. M. & Harper, M. E. (2001). EGFR and cancer prognosis. European Journal of Cancer 37(Suppl 4), S9S15.CrossRefGoogle ScholarPubMed
Noble, M. E., Endicott, J. A. & Johnson, L. N. (2004). Protein kinase inhibitors: insights into drug design from structure. Science 303(5665), 18001805.CrossRefGoogle ScholarPubMed
Nolen, B., Taylor, S. & Ghosh, G. (2004). Regulation of protein kinases; controlling activity through activation segment conformation. Molecular Cell 15(5), 661675.CrossRefGoogle ScholarPubMed
Ohren, J. F., Chen, H., Pavlovsky, A., Whitehead, C., Zhang, E., Kuffa, P., Yan, C., McConnell, P., Spessard, C., Banotai, C., Mueller, W. T., Delaney, A., Omer, C., Sebolt-Leopold, J., Dudley, D. T., Leung, I. K., Flamme, C., Warmus, J., Kaufman, M., Barrett, S., Tecle, H. & Hasemann, C. A. (2004). Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nature Structural & Molecular Biology 11(12), 11921197.CrossRefGoogle ScholarPubMed
Ono-Saito, N., Niki, I. & Hidaka, H. (1999). H-series protein kinase inhibitors and potential clinical applications. Pharmacology & Therapeutics 82(2–3), 123131.CrossRefGoogle Scholar
Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., Barbero, J. L., Malumbres, M. & Barbacid, M. (2003). Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genetics 35(1), 2531.CrossRefGoogle Scholar
Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J., Naoki, K., Sasaki, H., Fujii, Y., Eck, M. J., Sellers, W. R., Johnson, B. E. & Meyerson, M. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304(5676), 14971500.CrossRefGoogle ScholarPubMed
Pao, W., Miller, V., Zakowski, M., Doherty, J., Politi, K., Sarkaria, I., Singh, B., Heelan, R., Rusch, V., Fulton, L., Mardis, E., Kupfer, D., Wilson, R., Kris, M. & Varmus, H. (2004). EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proceedings of the National Academy of Sciences USA 101(36), 1330613311.CrossRefGoogle ScholarPubMed
Pargellis, C., Tong, L., Churchill, L., Cirillo, P. F., Gilmore, T., Graham, A. G., Grob, P. M., Hickey, E. R., Moss, N., Pav, S. & Regan, J. (2002). Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nature Structural Biology 9(4), 268272.CrossRefGoogle ScholarPubMed
Pawson, T. & Nash, P. (2000). Protein–protein interactions define specificity in signal transduction. Genes & Development 14(9), 10271047.CrossRefGoogle ScholarPubMed
Pierce, A. C., Sandretto, K. L. & Bemis, G. W. (2002). Kinase inhibitors and the case for CH…O hydrogen bonds in protein-ligand binding. Proteins 49(4), 567576.CrossRefGoogle Scholar
Potashman, M. H., Bready, J., Coxon, A., Demelfi, T. M. Jr., Dipietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). Design, synthesis, and evaluation of orally active benzimidazoles and benzoxazoles as vascular endothelial growth factor-2 receptor tyrosine kinase inhibitors. Journal of Medicinal Chemistry 50(18), 43514373.CrossRefGoogle ScholarPubMed
Raval, A., Tanner, S. M., Byrd, J. C., Angerman, E. B., Perko, J. D., Chen, S. S., Hackanson, B., Grever, M. R., Lucas, D. M., Matkovic, J. J., Lin, T. S., Kipps, T. J., Murray, F., Weisenburger, D., Sanger, W., Lynch, J., Watson, P., Jansen, M., Yoshinaga, Y., Rosenquist, R., De Jong, P. J., Coggill, P., Beck, S., Lynch, H., De La Chapelle, A. & Plass, C. (2007). Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell 129(5), 879890.CrossRefGoogle ScholarPubMed
Rini, B. I. (2008). Temsirolimus, an inhibitor of mammalian target of rapamycin. Clinical Cancer Research 14(5), 12861290.CrossRefGoogle ScholarPubMed
Rini, B. I., Rathmell, W. K. & Godley, P. (2008). Renal cell carcinoma. Current Opinion in Oncology 20(3), 300306.CrossRefGoogle ScholarPubMed
Rusnak, D. W., Affleck, K., Cockerill, S. G., Stubberfield, C., Harris, R., Page, M., Smith, K. J., Guntrip, S. B., Carter, M. C., Shaw, R. J., Jowett, A., Stables, J., Topley, P., Wood, E. R., Brignola, P. S., Kadwell, S. H., Reep, B. R., Mullin, R. J., Alligood, K. J., Keith, B. R., Crosby, R. M., Murray, D. M., Knight, W. B., Gilmer, T. M. & Lackey, K. (2001). The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Research 61(19), 71967203.Google ScholarPubMed
Samlowski, W. E., Wong, B. & Vogelzang, N. J. (2008). Management of renal cancer in the tyrosine kinase inhibitor era: a view from 3 years on. BJU International 102(2), 162165.CrossRefGoogle Scholar
Schindler, T., Bornmann, W., Pellicena, P., Miller, W. T., Clarkson, B. & Kuriyan, J. (2000). Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289(5486), 19381942.CrossRefGoogle ScholarPubMed
Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103(2), 211225.CrossRefGoogle ScholarPubMed
Sebolt-Leopold, J. S. (2008). Advances in the development of cancer therapeutics directed against the RAS-mitogen-activated protein kinase pathway. Clinical Cancer Research 14(12), 36513656.CrossRefGoogle ScholarPubMed
Sebolt-Leopold, J. S. & English, J. M. (2006). Mechanisms of drug inhibition of signalling molecules. Nature 441(7092), 457462.CrossRefGoogle ScholarPubMed
Sequist, L. V. & Lynch, T. J. (2008). EGFR tyrosine kinase inhibitors in lung cancer: an evolving story. Annual Review of Medicine 59, 429442.CrossRefGoogle ScholarPubMed
Sequist, L. V., Martins, R. G., Spigel, D., Grunberg, S. M., Spira, A., Janne, P. A., Joshi, V. A., McCollum, D., Evans, T. L., Muzikansky, A., Kuhlmann, G. L., Han, M., Goldberg, J. S., Settleman, J., Iafrate, A. J., Engelman, J. A., Haber, D. A., Johnson, B. E. & Lynch, T. J. (2008). First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. Journal of Clinical Oncology 26(15), 24422449.CrossRefGoogle ScholarPubMed
Shah, M. A., Kortmansky, J., Motwani, M., Drobnjak, M., Gonen, M., Yi, S., Weyerbacher, A., Cordon-Cardo, C., Lefkowitz, R., Brenner, B., O'Reilly, E., Saltz, L., Tong, W., Kelsen, D. P. & Schwartz, G. K. (2005). A phase I clinical trial of the sequential combination of irinotecan followed by flavopiridol. Clinical Cancer Research 11(10), 38363845.CrossRefGoogle ScholarPubMed
Shapiro, G. I. (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. Journal of Clinical Oncology 24(11), 17701783.CrossRefGoogle ScholarPubMed
Shigematsu, H. & Gazdar, A. F. (2006). Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. International Journal of Cancer 118(2), 257262.CrossRefGoogle ScholarPubMed
Shor, B., Zhang, W. G., Toral-Barza, L., Lucas, J., Abraham, R. T., Gibbons, J. J. & Yu, K. (2008). A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Research 68(8), 29342943.CrossRefGoogle ScholarPubMed
Stamos, J., Sliwkowski, M. X. & Eigenbrot, C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. Journal of Biological Chemistry 277(48), 4626546272.CrossRefGoogle ScholarPubMed
Tetsu, O. & McCormick, F. (2003). Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3(3), 233245.CrossRefGoogle ScholarPubMed
Thatcher, N., Chang, A., Parikh, P., Rodrigues Pereira, J., Ciuleanu, T., Von Pawel, J., Thongprasert, S., Tan, E. H., Pemberton, K., Archer, V. & Carroll, K. (2005). Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366(9496), 15271537.CrossRefGoogle ScholarPubMed
Tintelnot-Blomley, M. & Lewis, R. A. (2006). A critical appraisal of structure-based drug design. IDrugs: The Investigational Drugs Journal 9(2), 114118.Google ScholarPubMed
Tokarski, J. S., Newitt, J. A., Chang, C. Y., Cheng, J. D., Wittekind, M., Kiefer, S. E., Kish, K., Lee, F. Y., Borzillerri, R., Lombardo, L. J., Xie, D., Zhang, Y. & Klei, H. E. (2006). The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Research 66(11), 57905797.CrossRefGoogle ScholarPubMed
Toogood, P. L., Harvey, P. J., Repine, J. T., Sheehan, D. J., Vanderwel, S. N., Zhou, H., Keller, P. R., McNamara, D. J., Sherry, D., Zhu, T., Brodfuehrer, J., Choi, C., Barvian, M. R. & Fry, D. W. (2005). Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. Journal of Medicinal Chemistry 48(7), 23882406.CrossRefGoogle ScholarPubMed
Tse, A. N., Carvajal, R. & Schwartz, G. K. (2007). Targeting checkpoint kinase 1 in cancer therapeutics. Clinical Cancer Research 13(7), 19551960.CrossRefGoogle ScholarPubMed
Vajpai, N., Strauss, A., Fendrich, G., Cowan-Jacob, S. W., Manley, P. W., Grzesiek, S. & Jahnke, W. (2008). Solution conformations and dynamics of ABL kinase inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib. Journal of Biological Chemistry 283(26), 1829218302.CrossRefGoogle ScholarPubMed
Van Duyne, G. D., Standaert, R. F., Karplus, P. A., Schreiber, S. L. & Clardy, J. (1991). Atomic structure of FKBP-FK506, an immunophilin–immunosuppressant complex. Science 252(5007), 839842.CrossRefGoogle ScholarPubMed
Veverka, V., Crabbe, T., Bird, I., Lennie, G., Muskett, F. W., Taylor, R. J. & Carr, M. D. (2008). Structural characterization of the interaction of mTOR with phosphatidic acid and a novel class of inhibitor: compelling evidence for a central role of the FRB domain in small molecule-mediated regulation of mTOR. Oncogene 27(5), 585595.CrossRefGoogle Scholar
Vieth, M., Sutherland, J. J., Robertson, D. H. & Campbell, R. M. (2005). Kinomics: characterizing the therapeutically validated kinase space. Drug Discovery Today 10(12), 839846.CrossRefGoogle ScholarPubMed
Wan, P. T., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D. & Marais, R. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6), 855867.CrossRefGoogle ScholarPubMed
Weisberg, E., Manley, P. W., Breitenstein, W., Bruggen, J., Cowan-Jacob, S. W., Ray, A., Huntly, B., Fabbro, D., Fendrich, G., Hall-Meyers, E., Kung, A. L., Mestan, J., Daley, G. Q., Callahan, L., Catley, L., Cavazza, C., Azam, M., Neuberg, D., Wright, R. D., Gilliland, D. G. & Griffin, J. D. (2005). Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7(2), 129141.CrossRefGoogle ScholarPubMed
Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., Chen, C., Zhang, X., Vincent, P., McHugh, M., Cao, Y., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu, L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B., Post, L. E., Bollag, G. & Trail, P. A. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research 64(19), 70997109.CrossRefGoogle ScholarPubMed
Wissner, A. & Mansour, T. S. (2008). The development of HKI-272 and related compounds for the treatment of cancer. Archiv der Pharmazie 341(8), 465477.CrossRefGoogle ScholarPubMed
Wood, E. R., Truesdale, A. T., McDonald, O. B., Yuan, D., Hassell, A., Dickerson, S. H., Ellis, B., Pennisi, C., Horne, E., Lackey, K., Alligood, K. J., Rusnak, D. W., Gilmer, T. M. & Shewchuk, L. (2004). A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Research 64(18), 66526659.CrossRefGoogle ScholarPubMed
Wullschleger, S., Loewith, R. & Hall, M. N. (2006). TOR signaling in growth and metabolism. Cell 124(3), 471484.CrossRefGoogle ScholarPubMed
Wyatt, P. G., Woodhead, A. J., Berdini, V., Boulstridge, J. A., Carr, M. G., Cross, D. M., Davis, D. J., Devine, L. A., Early, T. R., Feltell, R. E., Lewis, E. J., McMenamin, R. L., Navarro, E. F., O'Brien, M. A., O'Reilly, M., Reule, M., Saxty, G., Seavers, L. C., Smith, D. M., Squires, M. S., Trewartha, G., Walker, M. T. & Woolford, A. J. (2008). Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. Journal of Medicinal Chemistry 51(16), 49864999.CrossRefGoogle Scholar
Yin, L., Morishige, K., Takahashi, T., Hashimoto, K., Ogata, S., Tsutsumi, S., Takata, K., Ohta, T., Kawagoe, J., Takahashi, K. & Kurachi, H. (2007). Fasudil inhibits vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. Molecular Cancer Therapeutics 6(5), 15171525.CrossRefGoogle ScholarPubMed
Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P. & Smith, A. (2008). The ground state of embryonic stem cell self-renewal. Nature 453(7194), 519523.CrossRefGoogle ScholarPubMed
Yu, Q., Geng, Y. & Sicinski, P. (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411(6841), 10171021.CrossRefGoogle ScholarPubMed
Yuan, T. L. & Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene 27(41), 54975510.CrossRefGoogle ScholarPubMed
Yun, C. H., Boggon, T. J., Li, Y., Woo, M. S., Greulich, H., Meyerson, M. & Eck, M. J. (2007). Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11(3), 217227.CrossRefGoogle ScholarPubMed
Yun, C. H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K. K., Meyerson, M. & Eck, M. J. (2008). The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences USA 105(6), 20702075.CrossRefGoogle ScholarPubMed
Zhang, X., Gureasko, J., Shen, K., Cole, P. A. & Kuriyan, J. (2006). An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6), 11371149.CrossRefGoogle ScholarPubMed
Zhang, X., Pickin, K. A., Bose, R., Jura, N., Cole, P. A. & Kuriyan, J. (2007). Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450(7170), 741744.CrossRefGoogle Scholar