Quarterly Reviews of Biophysics

Review Article

Protein kinase inhibitors: contributions from structure to clinical compounds

Louise N. Johnsona1 c1

a1 Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK


Protein kinases catalyse key phosphorylation reactions in signalling cascades that affect every aspect of cell growth, differentiation and metabolism. The kinases have become prime targets for drug intervention in the diseased state, especially in cancer. There are currently 10 drugs that have been approved for clinical use and many more in clinical trials. This review summarises the structural basis for protein kinase inhibition and discusses the mode of action for each of the approved drugs in the light of structural results. All but one of the approved compounds target the ATP binding site on the kinase. Both the active and inactive conformations of protein kinases have been used in strategies to produce potent and selective compounds. Targeting the inactive conformation can give high specificity. Targeting the active conformation is favourable where the diseased state has arisen from activating mutations, but such inhibitors generally target several protein kinases. Drug resistance mutations are a potential risk for both conformational states, where drug-binding regions are not directly involved in catalysis. Imatinib (Glivec), the most successful of protein kinase inhibitors, targets the inactive conformation of ABL tyrosine kinase. Newer compounds, such as dasatinib, which targets the ABL active state, have been developed to increase potency and have proved effective for some, but not all, drug-resistant mutations. The first epidermal growth factor receptor (EGFR) inhibitors in clinical use [gefitinib (Iressa) and erlotinib (Tarceva)] targeted the active form of the kinase, and this proved advantageous for patients whose cancer was caused by mutations that resulted in a constitutively active EGFR kinase domain. Newer approved compounds, such as lapatinib (Tykerb), target the inactive conformation with high potency. A further compound that forms a covalent attachment to the kinase has been found to overcome one of the major drug resistance mutations, where the effectiveness of the drug in vivo is dependent on its ability to compete successfully in the presence of cellular concentrations of ATP. Inhibitors of vascular endothelial growth factor receptor (VEGFR) kinase against cancer angiogenesis show the advantage of some relaxation in specificity. Sorafenib, originally developed as RAF inhibitor, is now in clinical use as a VEGFR inhibitor. Temsirolimus (a derivative of rapamycin) is the only example of a drug in clinical use that does not target the kinase ATP site. Instead rapamycin, when in complex with the protein FKBP12, effectively targets mTOR kinase at a site located on a domain, the FRB domain, that appears to be involved in localisation or substrate docking.


c1 Author for correspondence: L. N. Johnson, Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK. Tel.: +44 1865 613200; Fax: +44 1865 613201; Email: louise.johnson@bioch.ox.ac.uk