Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T04:57:08.168Z Has data issue: false hasContentIssue false

Silicate bioweathering and biomineralization in lacustrine microbialites: ancient analogues from the Miocene Duero Basin, Spain

Published online by Cambridge University Press:  03 February 2009

M. ESTHER SANZ-MONTERO*
Affiliation:
Departamento Petrología y Geoquímica, Facultad de Ciencias Geológicas, UCM, 28040, Madrid, Spain Instituto de Geología Económica (CSIC-UCM), C/ Antonio Novais 2, 28040, Madrid, Spain
J. PABLO RODRÍGUEZ-ARANDA
Affiliation:
Departamento Petrología y Geoquímica, Facultad de Ciencias Geológicas, UCM, 28040, Madrid, Spain
*
*Author for correspondence: mesanz@geo.ucm.es

Abstract

The Miocene dolomite-chert microbialites studied here offer a complete record of the geochemical cycles of silicate weathering and the subsequent formation of secondary products. The microbialites were formed in lacustrine systems during the Miocene of the Duero Basin, central Spain. Mineralogical, chemical and petrographic results provide evidence of the mediation of microbes in early weathering and by-product formation processes. Irrespective of the composition, the surfaces of the grains were subject to microbial attachment and concomitant weathering. Palaeo-weathering textures range from surface etching and pitting to extensive physical disaggregation of the minerals. Extreme silicate weathering led to the complete destruction of the silicate grains, whose prior existence is inferred from pseudomorphs exhibiting colonial textures like those recognized in the embedding matrix. Detailed petrographic and microanalytical examinations of the weathering effects in K-feldspars show that various secondary products with diverse crystallinity and chemical composition can coexist in the interior of a mineral. The coexistence of by-products is indicative of different microenvironmental conditions, likely created by microbial reactions. Thus, the presence of varied secondary products can be used as a criterion of biogenicity. Intensive alteration of P-bearing feldspars suggests that mineral weathering may have been driven by the nutrient requirements of the microbial consortium involved in the precipitation of dolomite. The rock record provides useful information on mineral weathering mediated by microbes.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armenteros, I., Corrochano, A., Alonso-Gavilán, G., Carballeira, J. & Rodríguez, J. M. 2002. Duero basin (northern Spain). In The Geology of Spain (eds Gibbons, W. & Moreno, M. T.), pp. 309–15. London: The Geological Society.Google Scholar
Ayllón-Quevedo, F., Souza-Egipsy, V., Sanz-Montero, M. E. & Rodríguez-Aranda, J. P. 2007. Fluid Inclusion analysis of twinned selenite gypsum beds from the Miocene of the Madrid Basin (Spain). Implication on Dolomite Bioformation. Sedimentary Geology 201, 212–30.Google Scholar
Banfield, J. F., Barker, W. W., Welch, S. A. & Taunton, A. 1999. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings National Academy of Science USA 96, 3404–11.Google Scholar
Barker, W. W., Welch, S. A. & Banfield, J. F. 1997. Geomicrobiology: Interactions between microbes and minerals. In Geomicrobiology of silicate mineral weathering (eds Banfield, J. F. & Nealson, K. H.), pp. 391428. Reviews in Mineralogy 335.Google Scholar
Barker, W. W., Welch, S. A., Chu, S. & Banfield, J. F. 1998. Experimental observations of the effects of bacteria on aluminosilicate weathering. American Mineralogy 83, 1551–63.Google Scholar
Bennett, P. C., Rogers, J. R. & Choi, W. J. 2001. Silicates, silicate weathering, and microbial ecology. Geomicrobiology Journal 18, 319.Google Scholar
Benzerara, K., Yoon, T. H., Menguy, N., Tyliszczak, T. & Brown, G. E. 2005. Nanoscale environments associated with bioweathering of a Mg-Fe-pyroxene. Proceedings National Academy of Science USA 25, 979–82.Google Scholar
Berner, R. A., Lasaga, A. C. & Garrells, R. M. 1983. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. America Journal of Science 283, 641–83.Google Scholar
Brehm, U., Gorbushina, A. & Mottershead, D. 2005. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeography, Palaeoclimatology, Palaeoecology 219, 117–29.Google Scholar
Characklis, W. G. & Marshall, K. C. 1990. Biofilms: a basis for an interdisciplinary approach. In Biofilms (eds Characklis, W. G. & Marshall, K. C.), pp. 315. New York: Wiley Interscience.Google Scholar
Davis, K. J. & Lüttge, A. 2005. Quantifying the relationship between microbial attachment and mineral surface dynamics using vertical scanning interferometry (VSI). America Journal of Science 305, 727–51.Google Scholar
Decho, A. W. 2000. Microbial biofilms in intertidal systems: an overview. Continental Shelf Research 20, 1257–73.Google Scholar
Dong, H. L., Kostka, J. E. & Kim, J. 2003. Microscopic evidence for microbial dissolution of smectite. Clays and Clay Minerals 51, 502–12.Google Scholar
Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chemical Geology 132, 59.Google Scholar
Fletcher, M. & Murphy, E. 2001. Transport of microorganisms in the subsurface: the role of attachment and colonization of particles surfaces. In Subsurface microbiology and biogeochemistry (eds Fredrickson, J. K. & Fletcher, M.), pp. 3968. New York: John Wiley and Sons, Inc.Google Scholar
González-Múñoz, M. T., Fernández-Luque, B., Martínez-Ruíz, F., Chekroun, K. B., Arias, J. M., Rodríguez-Gallego, M., Martínez-Cañamero, M., Linares, C. & Adina, P. 2003. Precipitation of Barite by Myxococcus Xanthus: Possible Implications for the Biogeochemical Cycle of Barium. Applied and Environmental Microbiology 69, 5722–5.Google Scholar
Konhauser, K. O. 1998. Diversity of bacterial iron mineralization. Earth-Science Reviews 43, 91121.Google Scholar
Konhauser, K. O. 2007. Introduction to geomicrobiology. Blackwell Publishing, 425 pp.Google Scholar
Konhauser, K. O. & Ferris, F. G. 1996. Diversity of iron and silica precipitation by microbial biofilms in hydrothermal waters, Iceland: implications for Precambrian iron formations. Geology 24, 323–6.Google Scholar
McIntyre, I. G., Prufert-Debout, L. & Reid, R. P. 2000. The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian stromatolites. Sedimentology 47, 915–21.Google Scholar
Pentecost, A. 1985. Association of cyanobacteria with tufa deposits: identity, enumeration, and nature of the sheath material revealed by histochemistry. Geomicrobiology Journal 4, 285–98.Google Scholar
Rodríguez-Aranda, J. P. & Calvo, J. P. 1998. Trace fossils and rhizoliths as a tool for sedimentological and palaeoenvironmental analysis of ancient continental evaporite successions. Palaeogeography, Palaeoclimatology, Palaeoecology 140, 383–99.Google Scholar
Rogers, J. R., Bennet, P. C. & Choi, W. J. 1998. Feldspars as a source of nutrients for microorganisms. American Mineralogist 83, 1532–40.Google Scholar
Sanz-Montero, M. E. & Rodríguez-Aranda, J. P. 2007. Microbial weathering of silicates in dolomite-precipitating environments. Miocene lacustrine deposits from the Duero and Madrid Basins, Spain. European Research Abstracts 9, A-06310.Google Scholar
Sanz-Montero, M. E., Rodríguez-Aranda, J. P. & Calvo, J. P. 2006. Mediation of endoevaporitic microbial communities in early replacement of gypsum by dolomite. A case study from Miocene lake deposits of the Madrid Basin, Spain. Journal of Sedimentary Research 76, 1257–66.Google Scholar
Sanz-Montero, M. E., Rodríguez-Aranda, J. P. & García Del Cura, M. A. 2005. Texturas diagenéticas de calcita desarrolladas sobre facies dolomíticas microbianas en el Mioceno de la Cuenca del Duero (Zona de Cuéllar). Macla 3, 193–5.Google Scholar
Sanz-Montero, M. E., Rodríguez-Aranda, J. P. & García Del Cura, M. A. 2008. Dolomite-silica stromatolites in Miocene lacustrine deposits from the Duero Basin, Spain. The role of organotemplates in the precipitation of dolomite. Sedimentology 55, 729–50.Google Scholar
Sanz-Montero, M. E., Rodríguez-Aranda, J. P. & Pérez-Soba, C. 2009. Microbial weathering of Fe-rich phyllosilicates and formation of pyrite in the dolomite-precipitating environment of a Miocene lacustrine system. European Journal of Mineralogy, in press. DOI: 10.1127/0935–1221/2009/0021–1877.Google Scholar
Senko, J. M., Campbell, B. S., Henriksen, J. R., Elsahed, M. S., Dewers, T. A. & Krumholz, L. R. 2004. Barite deposition resulting from phototrophic sulfide-oxidizing bacterial activity. Geochimica et Cosmochimica Acta 68, 773–80.Google Scholar
Stucki, J. W., Bailey, G. W. & Gan, H. M. 1996. Oxidation-reduction mechanisms in iron-bearing phyllosilicates. Applied Clay Science 10, 417–30.Google Scholar
Ullman, W. J. & Welch, S. A. 2002. Weathering. Mineral Dissolution and microbial metabolism. In Encyclopedia of environmental microbiology, vol. 6 (ed. Bitton, G.), pp. 3375–89. New York: John Wiley and Sons, Inc.Google Scholar
Urrutia, M. M. & Beveridge, T. J. 1994. Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis). Chemical Geology 116, 261–80.Google Scholar
Vandevivere, P., Welch, S. A., Ullman, W. J. & Kirchman, D. L. 1994. Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microbial Ecology 27, 241–51.Google Scholar
Welch, S. A., Barker, W. W. & Banfield, J. F. 1999. Microbial extracellular polymers and plagioclase dissolution. Geochimica et Cosmochimica Acta 63, 1405–19.Google Scholar
Welch, S. A. & Ullman, W. J. 1992. The effect of soluble organic acids on feldspar dissolution rates and stoichiometry. Geochimica et Cosmochimica Acta 57, 2725–36.Google Scholar
Supplementary material: Image

Sanz-Montero supplementary material

Colour figure 12.jpg

Download Sanz-Montero supplementary material(Image)
Image 169.3 KB
Supplementary material: Image

Sanz-Montero supplementary material

Colour figure 13.jpg

Download Sanz-Montero supplementary material(Image)
Image 553.1 KB