Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T21:24:13.364Z Has data issue: false hasContentIssue false

Stage-specific expression of NcSAG4 as a marker of chronic Neospora caninum infection in a mouse model

Published online by Cambridge University Press:  30 April 2009

A. AGUADO-MARTÍNEZ
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
L. M. ORTEGA-MORA*
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
G. ÁLVAREZ-GARCÍA
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
S. RODRÍGUEZ-MARCO
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
V. RISCO-CASTILLO
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
V. MARUGÁN-HERNÁNDEZ
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
A. FERNÁNDEZ-GARCÍA
Affiliation:
SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
*
*Corresponding author: Luis Miguel Ortega-Mora. SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain. Tel: +34-913944069. Fax: +34-913944098. E-mail: luis.ortega@vet.ucm.es

Summary

Neospora caninum infection persists throughout the life of its intermediate host due to the conversion of tachyzoites to slowly dividing bradyzoites that encyst in the brain. This event results in persistent N. caninum infection in bovine herds and partially explains the poor efficacy of many chemotherapeutic agents and vaccine formulations. Thus, there is a need for greater understanding of the tachyzoite-to-bradyzoite conversion mechanisms. Here we studied for the first time the transcription kinetics of the N. caninum bradyzoite-specific gene NcSAG4 in brain samples from chronically infected mice by means of real-time RT-PCR. NcSAG4-messenger RNA (mRNA) levels increased significantly during the chronic phase but followed 2 different expression patterns depending on the isolate used for murine inoculation. NcSAG4-mRNA levels in brains from Nc-1-inoculated mice peaked during late chronic infection (on day 64 post-infection, p.i.), whereas those from Nc-Liv-inoculated mice peaked earlier during the chronic infection (on day 32 p.i.). This difference could be a reflection of the different abilities of these isolates to replicate and form cysts in parasitized brains. These results are consistent with our observations of anti-rNcSAG4 antibody production; low levels were present at seroconversion and slowly increased during the chronic phase. In contrast, NcSAG1 transcription levels, which mark the tachyzoite stage, were maintained without variation in both groups of mice. This suggests the presence of a significant amount of tachyzoites or intermediate zoites expressing NcSAG1 in the brain, even during the late chronic infection.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguado-Martínez, A., Álvarez-Garcia, G., Fernández-García, A., Risco-Castillo, V., Arnaiz-Seco, I., Rebordosa-Trigueros, X., Navarro-Lozano, V. and Ortega-Mora, L. M. (2008). Usefulness of rNcGRA7- and rNcSAG4-based ELISA tests for distinguishing primo-infection, recrudescence, and chronic bovine neosporosis. Veterinary Parasitology 157, 182195.CrossRefGoogle ScholarPubMed
Atkinson, R., Harper, P. A., Ryce, C., Morrison, D. A. and Ellis, J. T. (1999). Comparison of the biological characteristics of two isolates of Neospora caninum. Parasitology 118, 363370.CrossRefGoogle ScholarPubMed
Barber, J., Trees, A. J., Owen, M. and Tennant, B. (1993). Isolation of Neospora caninum from a British dog. Veterinary Record 133, 531532.CrossRefGoogle ScholarPubMed
Blair, P. L., Witney, A., Haynes, J. D., Moch, J. K., Carucci, D. J. and Adams, J. H. (2002). Transcripts of developmentally regulated Plasmodium falciparum genes quantified by real-time RT-PCR. Nucleic Acids Research 30, 22242231.CrossRefGoogle ScholarPubMed
Buxton, D., Maley, S. W., Wright, S., Thomson, K. M., Rae, A. G. and Innes, E. A. (1998). The pathogenesis of experimental neosporosis in pregnant sheep. Journal of Comparative Pathology 118, 267279.CrossRefGoogle ScholarPubMed
Cleary, M. D., Singh, U., Blader, I. J., Brewer, J. L. and Boothroyd, J. C. (2002). Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryotic Cell 1, 329340.CrossRefGoogle ScholarPubMed
Collantes-Fernández, E., López-Pérez, I., Álvarez-García, G. and Ortega-Mora, L. M. (2006). Temporal distribution and parasite load kinetics in blood and tissues during Neospora caninum infection in mice. Infection and Immunity 74, 24912494.CrossRefGoogle ScholarPubMed
Collantes-Fernández, E., Zaballos, A., Álvarez-García, G. and Ortega-Mora, L. M. (2002). Quantitative detection of Neospora caninum in bovine aborted fetuses and experimentally infected mice by real-time PCR. Journal of Clinical Microbiology 40, 11941198.CrossRefGoogle ScholarPubMed
Contini, C., Giuliodori, M., Cultrera, R. and Seraceni, S. (2006). Detection of clinical-stage specific molecular Toxoplasma gondii gene patterns in patients with toxoplasmic lymphadenitis. Journal of Medical Microbiology 55, 771774.CrossRefGoogle ScholarPubMed
Cultrera, R., Seraceni, S. and Contini, C. (2002). Efficacy of a novel reverse transcriptase-polymerase chain reaction (RT-PCR) for detecting Toxoplasma gondii bradyzoite gene expression in human clinical specimens. Molecular and Cellular Probes 16, 3139.CrossRefGoogle ScholarPubMed
Dubey, J. P., Hattel, A. L., Lindsay, D. S. and Topper, M. J. (1988). Neonatal Neospora caninum infection in dogs: isolation of the causative agent and experimental transmission. Journal of the American Veterinary Medical Association 193, 12591263.Google ScholarPubMed
Dubey, J. P., Schares, G. and Ortega-Mora, L. M. (2007). Epidemiology and control of neosporosis and Neospora caninum. Clinical Microbiology Reviews 20, 323367.CrossRefGoogle ScholarPubMed
Ferguson, D. J. (2004). Use of molecular and ultrastructural markers to evaluate stage conversion of Toxoplasma gondii in both the intermediate and definitive host. International Journal for Parasitology 34, 347360.CrossRefGoogle ScholarPubMed
Fernández-García, A., Risco-Castillo, V., Zaballos, A., Álvarez-García, G. and Ortega-Mora, L. M. (2006). Identification and molecular cloning of the Neospora caninum SAG4 gene specifically expressed at bradyzoite stage. Molecular and Biochemical Parasitology 146, 8997.CrossRefGoogle ScholarPubMed
Fuchs, N., Sonda, S., Gottstein, B. and Hemphill, A. (1998). Differential expression of cell surface- and dense granule-associated Neospora caninum proteins in tachyzoites and bradyzoites. The Journal of Parasitology 84, 753758.CrossRefGoogle ScholarPubMed
Gross, U., Bohne, W., Lüder, C. G., Lugert, R., Seeber, F., Dittrich, C., Pohl, E. and Ferguson, D. J. (1996). Regulation of developmental differentiation in the protozoan parasite Toxoplasma gondii. The Journal of Eukaryotic Microbiology 43, 11451165.CrossRefGoogle ScholarPubMed
Hemphill, A., Vonlaufen, N. and Naguleswaran, A. (2006). Cellular and immunological basis of the host-parasite relationship during infection with Neospora caninum. Parasitology 133, 261278.CrossRefGoogle ScholarPubMed
Huang, P., Liao, M., Zhang, H., Lee, E. G., Nishikawa, Y. and Xuan, X. (2007). Dense-granule protein NcGRA7, a new marker for the serodiagnosis of Neospora caninum infection in aborting cows. Clinical and Vaccine Immunology 14, 16401643.CrossRefGoogle ScholarPubMed
Livak, K. J. and Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402408.CrossRefGoogle ScholarPubMed
Niederwieser, I., Felger, I. and Beck, H. P. (2000). Plasmodium falciparum: expression of gametocyte-specific genes in monolayer cultures and malaria-positive blood samples. Experimental Parasitology 95, 163169.CrossRefGoogle ScholarPubMed
Pérez-Zaballos, F. J., Ortega-Mora, L. M., Álvarez-García, G., Collantes-Fernández, E., Navarro-Lozano, V., García-Villada, L. and Costas, E. (2005). Adaptation of Neospora caninum isolates to cell-culture changes: an argument in favor of its clonal population structure. The Journal of Parasitology 91, 507510.CrossRefGoogle ScholarPubMed
Radke, J. R., Guerini, M. N., Jerome, M. and White, M. W. (2003). A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii. Molecular and Biochemical Parasitology 131, 119127.CrossRefGoogle ScholarPubMed
Risco-Castillo, V., Fernández-García, A. and Ortega-Mora, L. M. (2004). Comparative analysis of stress agents in a simplified in vitro system of Neospora caninum bradyzoite production. The Journal of Parasitology 90, 466470.CrossRefGoogle Scholar
Risco-Castillo, V., Fernández-García, A., Zaballos, A., Aguado-Martínez, A., Hemphill, A., Rodriguez-Bertos, A., Álvarez-García, G. and Ortega-Mora, L. M. (2007). Molecular characterisation of BSR4, a novel bradyzoite-specific gene from Neospora caninum. International Journal for Parasitology 37, 887896.CrossRefGoogle ScholarPubMed
Soete, M., Fortier, B., Camus, D. and Dubremetz, J. F. (1993). Toxoplasma gondii: Kinetics of bradyzoite-tachyzoite interconversion in vitro. Experimental Parasitology 76, 259264.CrossRefGoogle ScholarPubMed
Tunev, S. S., McAllister, M. M., Anderson-Sprecher, R. C. and Weiss, L. M. (2002). Neospora caninum in vitro: evidence that the destiny of a parasitophorous vacuole depends on the phenotype of the progenitor zoite. The Journal of Parasitology 88, 10951099.CrossRefGoogle ScholarPubMed
Vonlaufen, N., Muller, N., Keller, N., Naguleswaran, A., Bohne, W., McAllister, M. M., Bjorkman, C., Muller, E., Caldelari, R. and Hemphill, A. (2002). Exogenous nitric oxide triggers Neospora caninum tachyzoite-to-bradyzoite stage conversion in murine epidermal keratinocyte cell cultures. International Journal for Parasitology 32, 12531265.CrossRefGoogle ScholarPubMed