Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T22:12:33.827Z Has data issue: false hasContentIssue false

Stellar ages from asteroseismology

Published online by Cambridge University Press:  01 October 2008

Yveline Lebreton
Affiliation:
Observatoire de Paris, GEPI, UMR CNRS 8111, Place J. Janssen, 92195 Meudon, France email: Yveline.Lebreton@obspm.fr IPR, Université de Rennes 1, 35042 Rennes, France
Josefina Montalbán
Affiliation:
Institut d'Astrophysique et de Géophysique, Université de Liège, Belgium email: j.montalban@ulg.ac.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Asteroseismology has been recognized for a long time as a very powerful mean to probe stellar interiors. The oscillations frequencies are closely related to stellar internal structure properties via the density and the sound speed profiles. Since these properties are in turn tightly linked with the mass and evolutionary state, we can expect to determine the age and mass of a star from the comparison of its oscillation spectrum with the predictions of stellar models. Such a comparison will of course suffer both from the problems we face when modeling a particular star (for instance the uncertainties on its global parameters and chemical composition) and from our general misunderstanding of the physical processes at work in stellar interiors (for instance the various transport processes that may lead to core mixing and affect the ages predicted by models). However for stars where observations have provided very precise and numerous oscillation frequencies together with accurate global parameters and additional information (as the radius or the mass of the star if it is member of a binary system, the radius if it observable in interferometry or the mean density if the star is an exoplanet host), we can also expect to better constrain the physical description of the stellar structure and transport processes and to finally get a more reliable age estimation.

After a brief survey of stellar pulsations, we present some general seismic diagnostics that can be used to infer the age of a pulsating star as well as their limitations. We then illustrate the ability of asteroseismology to scrutinize stellar interiors on the basis of a few examples. In the years to come, extended very precise asteroseismic observations are expected, either in photometry or in spectroscopy, from present and future ground-based (HARPS, CORALIE, ELODIE, UVES, UCLES, SIAMOIS, SONG) or spatial devices (MOST, CoRoT, WIRE, Kepler, PLATO). This will considerably enlarge the sample of stars eligible to asteroseismic age determination and should allow to estimate the age of individual stars with a 10-20% accuracy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Aizenman, M., Smeyers, P., & Weigert, A. 1977, A&A, 58, 41Google Scholar
Appourchaux, T. et al. , 2008, A&A, 488, 705Google Scholar
Ballot, J., Turck-Chize, S., & Garcia, R. A. 2004, A&A 423, 1051Google Scholar
Basu, S., Mazumdar, A., Antia, H. M., & Demarque, P. 2004, MNRAS, 350, 277CrossRefGoogle Scholar
Bedding, T. R. & Kjeldsen, H. 2003, PASA, 20, 203CrossRefGoogle Scholar
Christensen-Dalsgaard, J. 1982, MNRAS, 199, 735CrossRefGoogle Scholar
Christensen-Dalsgaard, J. 1988, Advances in Helio- and Asteroseismology, Proc. IAU Symposium 123, 295CrossRefGoogle Scholar
di Mauro, M. P., Christensen-Dalsgaard, J., Paternò, L., & D'Antona, F. 2004, Solar Physics, 220, 185CrossRefGoogle Scholar
Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2004, A&A, 414, L17Google Scholar
Dziembowski, W. A., Gough, D. O., Houdek, G., & Sienkiewicz, R. 2001, MNRAS, 328, 601CrossRefGoogle Scholar
Dziembowski, W. A., Moskalik, P., & Pamyatnykh, A. A. 1993, MNRAS, 265, 588CrossRefGoogle Scholar
Gough, D. O. 1990, Lecture Notes in Physics 367, 283Google Scholar
Guzik, J. A., Kaye, A. B., Bradley, P. A., Cox, A. N., & Neuforge, C. 2000, ApJ (Letters), 542, 57CrossRefGoogle Scholar
Kjeldsen, H. & Bedding, T. R. 1995, A&A, 293, 87Google Scholar
Kjeldsen, H., Bedding, T. R., & Christensen-Dalsgaard, J. 2008, American Institute of Physics Conference Series, 1043, 365Google Scholar
Lebreton, Y., Michel, E., Goupil, M. J., Fernandes, J., & Baglin, A. 1995, Proc. IAU Symp. 166, Kluwer, p. 135Google Scholar
Lebreton, Y. 2005, The Three-Dimensional Universe with Gaia ESA Special Publication vol. 576, 493Google Scholar
Mazumdar, A. 2005, A&A, 441, 1079Google Scholar
Mazumdar, A., Basu, S., Collier, B. L., & Demarque, P. 2006, MNRAS, 372, 949CrossRefGoogle Scholar
Michel, E., Baglin, A., & Auvergne, M. et al. 2006, The CoRoT Mission ESA Special Publication, 1306, 39Google Scholar
Michel, E., Baglin, A., Auvergne, M. et al. 2008, Science, 322, 558CrossRefGoogle Scholar
Michel, E., Baglin, A., Weiss, W. W. et al. 2008, Communications in Asteroseismology, Proc. of the Wroclaw HELAS Workshop, in pressGoogle Scholar
Miglio, A., Montalbán, J., & Maceroni, C. 2007 MNRAS, 377, 373CrossRefGoogle Scholar
Miglio, A., Montalbán, J., Noels, A., & Eggenberger, P. 2008 MNRAS, 386, 1487CrossRefGoogle Scholar
Monteiro, M. J. P. F. G., Christensen-Dalsgaard, J., & Thompson, M. J. 2000, MNRAS, 316, 165CrossRefGoogle Scholar
Morel, P. & Lebreton, Y. 2008, Ap&SS, 316, 61Google Scholar
Pamyatnykh, A. A. 1999, Acta Astronomica, 49, 119Google Scholar
Pamyatnykh, A. A., Handler, G., & Dziembowski, W. A. 2004, MNRAS, 350, 102CrossRefGoogle Scholar
Perryman, M. A. C., de Boer, K. S., Gilmore, G. et al. , 2001, A&A, 369, 339Google Scholar
Roxburgh, I. W. & Vorontsov, S. V. 2003, A&A, 411, 215Google Scholar
Samadi, R., Goupil, M.-J., Alecian, E., Baudin, F., Georgobiani, D., Trampedach, R., Stein, R., & Nordlund, Å. 2005, Journal of Astrophysics and Astronomy, 26, 171CrossRefGoogle Scholar
Scuflaire, R., Montalbán, J., Théado, S. et al. Ap&SS, 316, 149Google Scholar
Scuflaire, R., Théado, S., Montalbán, J. et al. Ap&SS, 316, 83Google Scholar
Tassoul, M. 1980, ApJ, Suppl. 43, 469CrossRefGoogle Scholar
Vandakurov, Y. V. 1967, Astronomicheskii Zhurnal, 44, 786Google Scholar
Warner, P. B., Kaye, A. B., & Guzik, J. A. 2003, ApJ, 593, 1049CrossRefGoogle Scholar