Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-19T14:00:52.877Z Has data issue: false hasContentIssue false

Phylogenetic analysis indicates transitions from vegetative to sexual reproduction in the Lobaria retigera group (Lecanoromycetidae, Ascomycota)

Published online by Cambridge University Press:  26 May 2009

Carolina CORNEJO
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. Email: carolina.cornejo@wsl.ch
Svetlana CHABANENKO
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. Email: carolina.cornejo@wsl.ch 2 Sakhalin Botanical Garden, Gorkystreet 25, 693023 Yuzhno-Sakhalinsk, Russia.
Christoph SCHEIDEGGER
Affiliation:
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903 Birmensdorf, Switzerland. Email: carolina.cornejo@wsl.ch

Abstract

Phylogenetic relationships among the hypothetical species pairs Lobaria kurokawae / L. retigera and L. pseudopulmonaria / L. isidiosa were investigated based on TLC techniques and the phylogenetic analysis of the internal transcribed spacers (ITS) nrDNA. Results of TLC demonstrate that L. retigera and L. kurokawae can be chemically distinguished from L. isidiosa and L. pseudopulmonaria by the absence of retigeranic acid. Parsimony analysis of 18 specimens shows two monophyletic clades – a L.retigera lineage and a L. isidiosa lineage—both including their apotheciate counterparts. Unlike the original hypothesis of species pairs, our study reveals transitions from isidiate morphs that have the potential to rarely form apothecia, towards apotheciate morphs that produce no vegetative propagules.

Type
Research Article
Copyright
Copyright © British Lichen Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arup, U. & Grube, M. (2000) Is Rhizoplaca (Lecanorales, lichenized Ascomycota) a monophyletic genus? Canadian Journal of Botany 78: 318327.Google Scholar
Bory de Saint-Vincent, J. B. G. M. (1804) Voyage dans les Quatre Principales Îles des Mers d’Afrique. Vols 1–3. Paris.Google Scholar
Buschbom, H. & Mueller, G. M. (2006) Testing “species pair” hypotheses: evolutionary processes in the lichen-forming species complex Porpidia flavocoerulescens and Porpidia melinodes. Molecular Biology and Evolution 23: 574586.Google Scholar
Crespo, A., Molina, M. C., Blanco, O., Schroeter, B., Sancho, L. G. & Hawksworth, D. L. (2002) rDNA ITS and ß-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research 106: 788795.CrossRefGoogle Scholar
Culberson, C. F. & Ammann, K. (1979) Standardmethode zur Dünnschichtchromatographie von Flechtensubstanzen. Herzogia 5: 124.Google Scholar
Felsenstein, J. (1985) Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39: 783791.Google Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Goffinet, B. & Goward, T. (1998) Is Nephroma silvae-veteris the cyanomorph of Lobaria oregana? Insights from molecular, chemical and morphological characters. In Lichenographia Thomsoniana: North America Lichenology in Honour of John W. Thomson (Glenn, M. G., Harris, R. C., Dirig, R. & Cole, M. S., eds): 4152. Ithaca, NY: Mycotaxon Ltd.Google Scholar
Hall, B. G. (2004) Improving ClustalX Alignments with TuneClustalX. Bellingham Research Institute Report No. 1. www.bellinghamresearchinstitute.comGoogle Scholar
Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97109.CrossRefGoogle Scholar
Honegger, R. & Zippler, U. (2007) Mating systems in representatives of Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycological Research 111: 424432.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754755.CrossRefGoogle Scholar
Ihlen, P. G. & Ekman, S. (2002) Outline of phylogeny and character evolution in Rhizocarpon (Rhizocarpaceae, lichenized Ascomycota) based on nuclear ITS and mitochondrial SSU ribosomal DNA sequences. Biological Journal of the Linnean Society 77: 535546.CrossRefGoogle Scholar
Kaneda, M., Takahashi, R., Iitaka, Y. & Shibata, S. (1972) Retigeranic acid, a novel sesterpene isolated from the lichens of Lobaria retigera group. Tetrahedron Letters 45: 46094611.CrossRefGoogle Scholar
Kroken, S. & Taylor, J. W. (2001) Outcrossing and recombination in the lichenized fungus Letharia. Fungal Genetics and Biology 34: 8392.CrossRefGoogle ScholarPubMed
Lohtander, K., Källersjö, M. & Tehler, A. (1998 a) Dispersal strategies in Roccellina capensis (Arthoniales). Lichenologist 30: 341350.Google Scholar
Lohtander, K., Myllys, L., Sundin, R., Källersjö, M. & Tehler, A. (1998 b) The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist 101: 404411.Google Scholar
Lohtander, K., Källersjö, M., Moberg, R. & Tehler, A. (2000) The family Physciaceae in Fennoscandia: phylogeny inferred from ITS sequences. Mycologia 92: 728735.Google Scholar
Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. (2000) Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628651.CrossRefGoogle ScholarPubMed
Maddison, D. E. & Maddison, W. P. (2001) MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.03. Sunderland, Mass.: Sinauer Associates.Google Scholar
Martín, M. P., Winka, K., Llimona, X. & Lumbsch, H. T. (2000) Evaluation of morphological variation in the lichen Diploschistes ocellatus (Ascomycota, Ostropales): evidence from nuclear rDNA ITS sequence data. Plant Biology 2: 571578.Google Scholar
Mattsson, J. E. & Lumbsch, H. T. (1989) The use of the species pair concept in lichen taxonomy. Taxon 38: 238241.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953) Equations of state calculations by fast computing machines. Journal of Chemical Physics 21: 10871091.Google Scholar
Miądlikowska, J., McCune, B. & Lutzoni, F. (2002) Pseudocyphellaria perpetua, a new lichen from Western North America. Bryologist 105: 110.Google Scholar
Miądlikowska, J. & Lutzoni, F. (2004) Phylogenetic classification of Peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. American Journal of Botany 91: 449464.Google Scholar
Moritz, C. (1995) Uses of molecular phylogenies for conservation. Philosophical Transactions of the Royal Society of London, Series B 349: 113118.Google Scholar
Myllys, L., Lohtander, K., Källersjö, M. & Tehler, A. (1999) Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Molecular Phylogenetics and Evolution 12: 295309.Google Scholar
Myllys, L., Lohtander, K. & Tehler, A. (2001) ß-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia 93: 335343.CrossRefGoogle Scholar
Poelt, J. (1970) Das Kozept der Artenpaare bei den Flechten. In Flechtensymposion 1969, Deutsche Botanische Gesellschaft, 1970, Stuttgart, Germany.Google Scholar
Poelt, J. (1972) Die taxonomische Behandlung von Artenpaaren bei den Flechten. Botaniska Notiser 125: 7781.Google Scholar
Posada, D. & Crandall, K. A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817818.Google Scholar
Rao, P. S., Sarma, K. G. & Seshadri, T. R. (1965) Chemical components of Lobaria lichens from Western Himalayas. Current Science 34: 911.Google Scholar
Rao, P. S., Sarma, K. G. & Seshadri, T. R. (1966) Chemical components of Lobaria subisidiosa, L. retigera and L. subretigera from Western Himalayas. Current Science 35: 147148.Google Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.CrossRefGoogle ScholarPubMed
Ronquist, F., Huelsenbeck, J. P. & van der Mark, P. (2005) Mr Bayes 3.1 Manual. Draft 5/26/2005. http://mrbayes.csit.fsu.edu/manual.phpGoogle Scholar
Scherrer, S., Zippler, U. & Honegger, R. (2004) Characterisation of the mating-type locus in the genus Xanthoria (lichen-forming ascomycetes, lecanoromycetes). Fungal Genetics and Biology 42: 976988.Google Scholar
Seymour, F. A., Crittenden, P. D., Dickinson, M. J., Paoletti, M., Montiel, D., Cho, L. & Dyer, P. S. (2005) Breeding systems in the lichen-forming fungal genus Cladonia. Fungal Genetics and Biology 42: 554563.CrossRefGoogle ScholarPubMed
Stenroos, S., Stocker-Wörgötter, E., Yoshimura, I., Myllys, L., Thell, A. & Hyvonen, J. (2003) Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Canadian Journal of Botany 81: 232247.CrossRefGoogle Scholar
Sugawara, H., Kasuya, A., Iitaka, Y. & Shibata, S. (1991) Further-studies on the structure of retigeranic acid. Chemical and Pharmaceutical Bulletin 39: 30513054.Google Scholar
Swofford, D. L. (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Takahashi, R., Chiang, H. C., Aimi, N., Tanaka, A. & Shibata, S. (1972) The structures of retigeric acids A and B from lichens of the Lobaria retigera group. Phytochemistry 11: 20392045.Google Scholar
Tehler, A. (1982) The species pair concept in lichenology. Taxon 31: 708714.CrossRefGoogle Scholar
Tehler, A. & Källersjö, M. (2001) Parmeliopsis ambigua and P. hyperopta (Parmeliaceae): species or chemotypes? Lichenologist 35: 403408.CrossRefGoogle Scholar
Thomas, M. A., Ryan, D. J., Farnden, K. J. F. & Galloway, D. J. (2002) Observations on phylogenetic relationships within Lobariaceae Chevall. (Lecanorales, Ascomycota) in New Zealand, based on ITS-5.8S molecular sequence data. Bibliotheca Lichenologica 82: 123138.Google Scholar
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.Google Scholar
White, F. J. & James, P. W. (1985). A New Guide to Microchemical Techniques for the Identification of Lichen Substances. London: British Lichen Society.Google Scholar
White, T. J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfond, D. H., Sninsky, J. J. & White, T. J., eds): 315322. New York: Academic Press, Inc.Google Scholar
Wiklund, E. & Wedin, M. (2003) The phylogenetic relationships of the cyanobacterial lichens in the Lecanorales suborder Peltigerineae. Cladistics 19: 419431.CrossRefGoogle ScholarPubMed
Yoshimura, I. (1971) The genus Lobaria of Eastern Asia. Journal of the Hattori Botanical Laboratory 34: 231336.Google Scholar
Zoller, S., Lutzoni, F. & Scheidegger, C. (1999) Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Molecular Ecology 8: 20492059.CrossRefGoogle ScholarPubMed