Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T01:21:17.645Z Has data issue: false hasContentIssue false

Overlapping self-affine sets of Kakeya type

Published online by Cambridge University Press:  01 June 2009

ANTTI KÄENMÄKI
Affiliation:
Department of Mathematics and Statistics, University of Jyväskylä, PO Box 35 (MaD), FI-40014, Finland (email: antakae@maths.jyu.fi, shmerkin@maths.jyu.fi)
PABLO SHMERKIN
Affiliation:
Department of Mathematics and Statistics, University of Jyväskylä, PO Box 35 (MaD), FI-40014, Finland (email: antakae@maths.jyu.fi, shmerkin@maths.jyu.fi)

Abstract

We compute the Minkowski dimension for a family of self-affine sets on ℝ2. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Douady, A. and Oesterlé, J.. Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris Sér. A-B 290(24) (1980), 11351138.Google Scholar
[2]Edgar, G. A.. Fractal dimension of self-affine sets: some examples. Rend. Circ. Mat. Palermo (2) Suppl. 28 (1988), 341358.Google Scholar
[3]Falconer, K. J.. The Hausdorff dimension of self-affine fractals. Math. Proc. Cambridge Philos. Soc. 103(2) (1988), 339350.CrossRefGoogle Scholar
[4]Falconer, K. J.. The dimension of self-affine fractals II. Math. Proc. Cambridge Philos. Soc. 111(1) (1992), 169179.CrossRefGoogle Scholar
[5]Falconer, K. J.. Bounded distortion and dimension for nonconformal repellers. Math. Proc. Cambridge Philos. Soc. 115(2) (1994), 315334.CrossRefGoogle Scholar
[6]Falconer, K. J. and Miao, J.. Exceptional sets for self-affine fractals. Math. Proc. Cambridge Philos. Soc. to appear.Google Scholar
[7]Falconer, K. J. and Miao, J.. Dimensions of self-affine fractals and multifractals generated by upper-triangular matrices. Fractals 15(3) (2007), 289299.CrossRefGoogle Scholar
[8]Feng, D.-J. and Wang, Y.. A class of self-affine sets and self-affine measures. J. Fourier Anal. Appl. 11(1) (2005), 107124.CrossRefGoogle Scholar
[9]Hu, H.. Box dimensions and topological pressure for some expanding maps. Comm. Math. Phys. 191(2) (1998), 397407.CrossRefGoogle Scholar
[10]Hueter, I. and Lalley, S. P.. Falconer’s formula for the Hausdorff dimension of a self-affine set in ℝ2. Ergod. Th. & Dynam. Sys. 15(1) (1995), 7797.CrossRefGoogle Scholar
[11]Hutchinson, J. E.. Fractals and self-similarity. Indiana Univ. Math. J. 30(5) (1981), 713747.CrossRefGoogle Scholar
[12]Jordan, T., Pollicott, M. and Simon, K.. Hausdorff dimension for randomly perturbed self-affine attractors. Comm. Math. Phys. 270(2) (2007), 519544.CrossRefGoogle Scholar
[13]Käenmäki, A.. On natural invariant measures on generalised iterated function systems. Ann. Acad. Sci. Fenn. Math. 29(2) (2004), 419458.Google Scholar
[14]Käenmäki, A. and Vilppolainen, M.. Separation conditions on controlled Moran constructions. Fund. Math. 200(1) (2008), 69100.CrossRefGoogle Scholar
[15]Mattila, P.. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[16]Mauldin, R. D. and Urbański, M.. Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. 73(3) (1996), 105154.CrossRefGoogle Scholar
[17]McMullen, C.. The Hausdorff dimension of general Sierpiński carpets. Nagoya Math. J. 96 (1984), 19.CrossRefGoogle Scholar
[18]Moran, P. A. P.. Additive functions of intervals and Hausdorff measure. Proc. Cambridge Philos. Soc. 42 (1946), 1523.CrossRefGoogle Scholar
[19]Pollicott, M. and Yuri, M.. Dynamical Systems and Ergodic Theory (London Mathematical Society Student Texts, 40). Cambridge University Press, Cambridge, 1998.CrossRefGoogle Scholar
[20]Shmerkin, P.. Overlapping self-affine sets. Indiana Univ. Math. J. 55(4) (2006), 12911331.CrossRefGoogle Scholar
[21]Shmerkin, P. and Solomyak, B.. Zeros of {−1,0,1} power series and connectedness loci for self-affine sets. Experiment. Math. 15(4) (2006), 499511.CrossRefGoogle Scholar
[22]Solomyak, B.. Measure and dimension for some fractal families. Math. Proc. Cambridge Philos. Soc. 124(3) (1998), 531546.CrossRefGoogle Scholar
[23]Steele, J. M.. Kingman’s subadditive ergodic theorem. Ann. Inst. H. Poincaré Probab. Statist. 25(1) (1989), 9398.Google Scholar
[24]Temam, R.. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York, 1988.CrossRefGoogle Scholar
[25]Wolff, T.. Recent work connected with the Kakeya problem. Prospects in Mathematics (Princeton, NJ, 1996). American Mathematical Society, Providence, RI, 1999, pp. 129162.Google Scholar