Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T01:55:07.193Z Has data issue: false hasContentIssue false

A role for aquaporin-4 in fluid regulation in the inner retina

Published online by Cambridge University Press:  01 March 2009

MELINDA J. GOODYEAR
Affiliation:
School of Psychological Science, La Trobe University, Melbourne, Victoria, Australia
SHEILA G. CREWTHER*
Affiliation:
School of Psychological Science, La Trobe University, Melbourne, Victoria, Australia
BARBARA M. JUNGHANS
Affiliation:
School of Psychological Science, La Trobe University, Melbourne, Victoria, Australia School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
*
*Address correspondence and reprint requests to: Sheila G. Crewther, School of Psychological Science, La Trobe University, Melbourne, Victoria 3086, Australia. E-mail: s.crewther@latrobe.edu.au

Abstract

Many diverse retinal disorders are characterized by retinal edema; yet, little experimental attention has been given to understanding the fundamental mechanisms underlying and contributing to these fluid-based disorders. Water transport in and out of cells is achieved by specialized membrane channels, with most rapid water transport regulated by transmembrane water channels known as aquaporins (AQPs). The predominant AQP in the mammalian retina is AQP4, which is expressed on the Müller glial cells. Müller cells have previously been shown to modulate neuronal activity by modifying the concentrations of ions, neurotransmitters, and other neuroactive substances within the extracellular space between the inner and the outer limiting membrane. In doing so, Müller cells maintain extracellular homeostasis, especially with regard to the spatial buffering of extracellular potassium (K+) via inward rectifying K+ channels (Kir channels). Recent studies of water transport and the spatial buffering of K+ through glial cells have highlighted the involvement of both AQP4 and Kir channels in regulating the extracellular environment in the brain and retina. As both glial functions are associated with neuronal activation, controversy exists in the literature as to whether the relationship is functionally dependent. It is argued in this review that as AQP4 channels are likely to be the conduit for facilitating fluid homeostasis in the inner retina during light activation, AQP4 channels are also likely to play a consequent role in the regulation of ocular volume and growth. Recent research has already shown that the level of AQP4 expression is associated with environmentally driven manipulations of light activity on the retina and the development of myopia.

Type
Review
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adorante, J.S. & Miller, S.S. (1990). Potassium-dependent volume regulation in retinal pigment epithelium is mediated by Na, K, Cl cotransport. The Journal of General Physiology 96, 11531176.CrossRefGoogle ScholarPubMed
Agre, P., Bonhivers, M. & Borgnia, M.J. (1998). The aquaporins, blueprints for cellular plumbing systems. The Journal of Biological Chemistry 273, 1465914662.CrossRefGoogle ScholarPubMed
Agre, P., King, L.S., Yasui, M., Guggino, W.B., Ottersen, O.P., Fujiyoshi, Y., Engel, A. & Nielsen, S. (2002). Aquaporin water channels—From atomic structure to clinical medicine. The Journal of Physiology 542, 316.CrossRefGoogle ScholarPubMed
Agre, P., Preston, G.M., Smith, B.L., Jung, J.S., Raina, S., Moon, C., Guggino, W.B. & Nielsen, S. (1993). Aquaporin CHIP: The archetypal molecular water channel. American Journal of Physiology 265, F463F476.Google ScholarPubMed
Amiry-Moghaddam, M., Frydenlund, D.S. & Ottersen, O.P. (2004 a). Anchoring of aquaporin-4 in brain: Molecular mechanisms and implications for the physiology and pathophysiology of water transport. Neuroscience 129, 9991010.CrossRefGoogle ScholarPubMed
Amiry-Moghaddam, M., Otsuka, T., Hurn, P.D., Traystman, R.J., Haug, F.M., Froehner, S.C., Adams, M.E., Neely, J.D., Agre, P., Ottersen, O.P. & Bhardwaj, A. (2003). An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proceedings of the National Academy of Sciences of the United States of America 100, 21062111.CrossRefGoogle ScholarPubMed
Amiry-Moghaddam, M. & Ottersen, O.P. (2003). The molecular basis of water transport in the brain. Nature Reviews. Neuroscience 4, 9911001.CrossRefGoogle ScholarPubMed
Amiry-Moghaddam, M., Xue, R., Haug, F.M., Neely, J.D., Bhardwaj, A., Agre, P., Adams, M.E., Froehner, S.C., Mori, S. & Ottersen, O.P. (2004 b). Alpha-syntrophin deletion removes the perivascular but not endothelial pool of aquaporin-4 at the blood-brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia. The FASEB Journal 18, 542544.CrossRefGoogle ScholarPubMed
Antcliff, R.J., Hussain, A.A. & Marshall, J. (2001). Hydraulic conductivity of fixed retinal tissue after sequential excimer laser ablation: Barriers limiting fluid distribution and implications for cystoid macular edema. Archives of Ophthalmology 119, 539544.CrossRefGoogle ScholarPubMed
Aoki, K., Uchihara, T., Tsuchiya, K., Nakamura, A., Ikeda, K. & Wakayama, Y. (2003). Enhanced expression of aquaporin 4 in human brain with infarction. Acta Neuropathologica 106, 121124.CrossRefGoogle ScholarPubMed
Bishop, P.N., Takanosu, M., Le Goff, M. & Mayne, R. (2002). The role of the posterior ciliary body in the biosynthesis of vitreous humour. Eye 16, 454460.CrossRefGoogle ScholarPubMed
Borgnia, M., Nielsen, S., Engel, A. & Agre, P. (1999). Cellular and molecular biology of the aquaporin water channels. Annual Review of Biochemistry 68, 425458.CrossRefGoogle ScholarPubMed
Brew, H., Gray, P.T., Mobbs, P. & Attwell, D. (1986). Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature 324, 466468.CrossRefGoogle ScholarPubMed
Bringmann, A., Pannicke, T., Grosche, J., Francke, M., Wiedemann, P., Skatchkov, S.N., Osborne, N.N. & Reichenbach, A. (2006). Muller cells in the healthy and diseased retina. Progress in Retinal and Eye Research 25, 397424.CrossRefGoogle ScholarPubMed
Bringmann, A., Reichenbach, A. & Wiedemann, P. (2004). Pathomechanisms of cystoid macular edema. Ophthalmic Research 36, 241249.CrossRefGoogle ScholarPubMed
Bringmann, A., Uckermann, O., Pannicke, T., Iandiev, I., Reichenbach, A. & Wiedemann, P. (2005). Neuronal versus glial cell swelling in the ischaemic retina. Acta Ophthalmologica Scandinavica 83, 528538.CrossRefGoogle ScholarPubMed
Candia, O.A. & Alvarez, L.J. (2008). Fluid transport phenomena in ocular epithelia. Progress in Retinal and Eye Research 27, 197212.CrossRefGoogle ScholarPubMed
Civan, M.M. & Macknight, A.D. (2004). The ins and outs of aqueous humour secretion. Experimental Eye Research 78, 625631.CrossRefGoogle ScholarPubMed
Crewther, D.P. (2000). The role of photoreceptors in the control of refractive state. Progress in Retinal and Eye Research 19, 421457.CrossRefGoogle ScholarPubMed
Crewther, S.G., Liang, H., Junghans, B.M. & Crewther, D.P. (2006). Ionic control of ocular growth and refractive change. Proceedings of the National Academy of Sciences of the United States of America 103, 1566315668.CrossRefGoogle ScholarPubMed
Da, T. & Verkman, A.S. (2004). Aquaporin-4 gene disruption in mice protects against impaired retinal function and cell death after ischemia. Investigative Ophthalmology & Visual Science 45, 44774483.CrossRefGoogle ScholarPubMed
Dmitriev, A.V. & Mangel, S.C. (2004). Retinal pH reflects retinal energy metabolism in the day and night. Journal of Neurophysiology 91, 24042412.CrossRefGoogle ScholarPubMed
Dreher, Z., Distler, C. & Dreher, B. (1994). Vitread proliferation of filamentous processes in avian Muller cells and its putative functional correlates. The Journal of Comparative Neurology 350, 96108.CrossRefGoogle ScholarPubMed
Fitzgerald, M.E., Wildsoet, C.F. & Reiner, A. (2002). Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks. Experimental Eye Research 74, 561570.CrossRefGoogle ScholarPubMed
Frigeri, A., Nicchia, G.P., Nico, B., Quondamatteo, F., Herken, R., Roncali, L. & Svelto, M. (2001). Aquaporin-4 deficiency in skeletal muscle and brain of dystrophic mdx mice. The FASEB Journal 15, 9098.CrossRefGoogle ScholarPubMed
Frishman, L.J., Yamamoto, F., Bogucka, J. & Steinberg, R.H. (1992). Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. Journal of Neurophysiology 67, 12011212.CrossRefGoogle Scholar
Frydenlund, D.S., Bhardwaj, A., Otsuka, T., Mylonakou, M.N., Yasumura, T., Davidson, K.G., Zeynalov, E., Skare, O., Laake, P., Haug, F.M., Rash, J.E., Agre, P., Ottersen, O.P. & Amiry-Moghaddam, M. (2006). Temporary loss of perivascular aquaporin-4 in neocortex after transient middle cerebral artery occlusion in mice. Proceedings of the National Academy of Sciences of the United States of America 103, 1353213536.CrossRefGoogle ScholarPubMed
Funaki, H., Yamamoto, T., Koyama, Y., Kondo, D., Yaoita, E., Kawasaki, K., Kobayashi, H., Sawaguchi, S., Abe, H. & Kihara, I. (1998). Localization and expression of AQP5 in cornea, serous salivary glands, and pulmonary epithelial cells. American Journal of Physiology 275, C11511157.CrossRefGoogle ScholarPubMed
Goodyear, M.J., Junghans, B.M., Giummarra, L., Murphy, M.J., Crewther, D.P. & Crewther, S.G. (2008). A role for aquaporin-4 during induction of form deprivation myopia in chick. Molecular Vision 14, 298307.Google ScholarPubMed
Hamann, S. (2002). Molecular mechanisms of water transport in the eye. International Review of Cytology 215, 395431.CrossRefGoogle ScholarPubMed
Hamann, S., Herrera-Perez, J.J., Bundgaard, M., Alvarez-Leefmans, F.J. & Zeuthen, T. (2005). Water permeability of Na+-K+-2Cl− cotransporters in mammalian epithelial cells. The Journal of Physiology 568, 123135.CrossRefGoogle ScholarPubMed
Hamann, S., Kiilgaard, J.F., la Cour, M., Prause, J.U. & Zeuthen, T. (2003). Cotransport of H+, lactate, and H2O in porcine retinal pigment epithelial cells. Experimental Eye Research 76, 493504.CrossRefGoogle ScholarPubMed
Hamann, S. & la Cour, M. (2005). Water homeostasis in the ischaemic retina: Is aquaporin-4 involved? Acta Ophthalmologica Scandinavica 83, 523525.CrossRefGoogle ScholarPubMed
Hamann, S., Zeuthen, T., la Cour, M., Nagelhus, E.A., Ottersen, O.P., Agre, P. & Nielsen, S. (1998). Aquaporins in complex tissues: Distribution of aquaporins 1-5 in human and rat eye. American Journal of Physiology 274, C13321345.CrossRefGoogle ScholarPubMed
Hara-Chikuma, M. & Verkman, A.S. (2006). Physiological roles of glycerol-transporting aquaporins: The aquaglyceroporins. Cellular and Molecular Life Sciences 63, 13861392.CrossRefGoogle ScholarPubMed
Hughes, B.A., Gallemore, R.P. & Miller, S.S. (1998). Transport mechanisms in retinal pigment epithelium. In The Retinal Pigment Epithelium: Function and Disease, ed. Marmor, M.F. & Wolfensberger, T.J., pp. 103134. New York, NY: Oxford University Press.Google Scholar
Iandiev, I., Biedermann, B., Reichenbach, A., Wiedemann, P. & Bringmann, A. (2006 a). Expression of aquaporin-9 immunoreactivity by catecholaminergic amacrine cells in the rat retina. Neuroscience Letters 398, 264267.CrossRefGoogle ScholarPubMed
Iandiev, I., Pannicke, T., Biedermann, B., Wiedemann, P., Reichenbach, A. & Bringmann, A. (2006 b). Ischemia-reperfusion alters the immunolocalization of glial aquaporins in rat retina. Neuroscience Letters 408, 108112.CrossRefGoogle ScholarPubMed
Iandiev, I., Pannicke, T., Hartig, W., Grosche, J., Wiedemann, P., Reichenbach, A. & Bringmann, A. (2007). Localization of aquaporin-0 immunoreactivity in the rat retina. Neuroscience Letters 426, 8186.CrossRefGoogle ScholarPubMed
Ishii, M., Horio, Y., Tada, Y., Hibino, H., Inanobe, A., Ito, M., Yamada, M., Gotow, T., Uchiyama, Y. & Kurachi, Y. (1997). Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Muller cell membrane: Their regulation by insulin and laminin signals. The Journal of Neuroscience 17, 77257735.CrossRefGoogle ScholarPubMed
Karowski, C.J. & Proenza, L.M. (1977). Relationship between Muller cell responses, a local transretinal potential, and potassium flux. Journal of Neurophysiology 40, 244259.CrossRefGoogle ScholarPubMed
Karwoski, C.J., Lu, H.K. & Newman, E.A. (1989). Spatial buffering of light-evoked potassium increases by retinal Muller (glial) cells. Science 244, 578580.CrossRefGoogle ScholarPubMed
Kimelberg, H.K. (1995). Current concepts of brain edema. Review of laboratory investigations. Journal of Neurosurgery 83, 10511059.CrossRefGoogle ScholarPubMed
Kleffner, I., Bungeroth, M., Schiffbauer, H., Schabitz, W.R., Ringelstein, E.B. & Kuhlenbaumer, G. (2008). The role of aquaporin-4 polymorphisms in the development of brain edema after middle cerebral artery occlusion. Stroke 39, 13331335.CrossRefGoogle ScholarPubMed
Kofuji, P. & Newman, E.A. (2004). Potassium buffering in the central nervous system. Neuroscience 129, 10451056.CrossRefGoogle ScholarPubMed
Lehninger, A.L. (1970). Biochemistry; The Molecular Basis of Cell Structure and Function. New York, NY: Worth Publishers.Google Scholar
Li, J., Patil, R.V. & Verkman, A.S. (2002). Mildly abnormal retinal function in transgenic mice without Muller cell aquaporin-4 water channels. Investigative Ophthalmology & Visual Science 43, 573579.Google ScholarPubMed
Liang, H., Crewther, S.G., Crewther, D.P. & Junghans, B.M. (2004). Structural and elemental evidence for edema in the retina, retinal pigment epithelium, and choroid during recovery from experimentally induced myopia. Investigative Ophthalmology & Visual Science 45, 24632474.CrossRefGoogle ScholarPubMed
Ma, T., Yang, B., Gillespie, A., Carlson, E.J., Epstein, C.J. & Verkman, A.S. (1997). Generation and phenotype of a transgenic knockout mouse lacking the mercurial-insensitive water channel aquaporin-4. The Journal of Clinical Investigation 100, 957962.CrossRefGoogle ScholarPubMed
MacAulay, N., Hamann, S. & Zeuthen, T. (2004). Water transport in the brain: Role of cotransporters. Neuroscience 129, 10311044.CrossRefGoogle ScholarPubMed
Manley, G.T., Fujimura, M., Ma, T., Noshita, N., Filiz, F., Bollen, A.W., Chan, P. & Verkman, A.S. (2000). Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nature Medicine 6, 159163.CrossRefGoogle ScholarPubMed
Marmor, M.F. (1999). Mechanisms of fluid accumulation in retinal edema. Documenta Ophthalmologica 97, 239249.CrossRefGoogle ScholarPubMed
Meinild, A.K., Klaerke, D.A. & Zeuthen, T. (1998). Bidirectional water fluxes and specificity for small hydrophilic molecules in aquaporins 0-5. The Journal of Biological Chemistry 273, 3244632451.CrossRefGoogle ScholarPubMed
Morgan, I. & Rose, K. (2005). How genetic is school myopia? Progress in Retinal and Eye Research 24, 138.CrossRefGoogle ScholarPubMed
Mori, S., Miller, W.H. & Tomita, T. (1976). Muller cell function during spreading depression in frog retina. Proceedings of the National Academy of Sciences of the United States of America 73, 13511354.CrossRefGoogle ScholarPubMed
Moseley, H., Foulds, W.S., Allan, D. & Kyle, P.M. (1984). Routes of clearance of radioactive water from the rabbit vitreous. The British Journal of Ophthalmology 68, 145151.CrossRefGoogle ScholarPubMed
Nagelhus, E.A., Horio, Y., Inanobe, A., Fujita, A., Haug, F.M., Nielsen, S., Kurachi, Y. & Ottersen, O.P. (1999). Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Muller cells is mediated by a coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26, 4754.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Nagelhus, E.A., Mathiisen, T.M. & Ottersen, O.P. (2004). Aquaporin-4 in the central nervous system: Cellular and subcellular distribution and coexpression with KIR4.1. Neuroscience 129, 905913.CrossRefGoogle ScholarPubMed
Nagelhus, E.A., Veruki, M.L., Torp, R., Haug, F.M., Laake, J.H., Nielsen, S., Agre, P. & Ottersen, O.P. (1998). Aquaporin-4 water channel protein in the rat retina and optic nerve: Polarized expression in Muller cells and fibrous astrocytes. The Journal of Neuroscience 18, 25062519.CrossRefGoogle ScholarPubMed
Neely, J.D., Amiry-Moghaddam, M., Ottersen, O.P., Froehner, S.C., Agre, P. & Adams, M.E. (2001). Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proceedings of the National Academy of Sciences of the United States of America 98, 1410814113.CrossRefGoogle ScholarPubMed
Newman, E. & Reichenbach, A. (1996). The Muller cell: A functional element of the retina. Trends in Neurosciences 19, 307312.CrossRefGoogle ScholarPubMed
Newman, E.A. (1984). Regional specialization of retinal glial cell membrane. Nature 309, 155157.CrossRefGoogle ScholarPubMed
Newman, E.A. (1985 a). Membrane physiology of retinal glial (Muller) cells. The Journal of Neuroscience 5, 22252239.CrossRefGoogle ScholarPubMed
Newman, E.A. (1985 b). Voltage-dependent calcium and potassium channels in retinal glial cells. Nature 317, 809811.CrossRefGoogle ScholarPubMed
Newman, E.A. (1987). Distribution of potassium conductance in mammalian Muller (glial) cells: A comparative study. The Journal of Neuroscience 7, 24232432.Google ScholarPubMed
Newman, E.A. (1993). Inward-rectifying potassium channels in retinal glial (Muller) cells. The Journal of Neuroscience 13, 33333345.CrossRefGoogle ScholarPubMed
Newman, E.A., Frambach, D.A. & Odette, L.L. (1984). Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225, 11741175.CrossRefGoogle ScholarPubMed
Newman, E.A. & Odette, L.L. (1984). Model of electroretinogram b-wave generation: A test of the K+ hypothesis. Journal of Neurophysiology 51, 164182.CrossRefGoogle ScholarPubMed
Nielsen, S., Nagelhus, E.A., Amiry-Moghaddam, M., Bourque, C., Agre, P. & Ottersen, O.P. (1997). Specialized membrane domains for water transport in glial cells: High-resolution immunogold cytochemistry of aquaporin-4 in rat brain. The Journal of Neuroscience 17, 171180.CrossRefGoogle ScholarPubMed
Nielsen, S., Smith, B.L., Christensen, E.I. & Agre, P. (1993). Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proceedings of the National Academy of Sciences of the United States of America 90, 72757279.CrossRefGoogle ScholarPubMed
Pannicke, T., Iandiev, I., Uckermann, O., Biedermann, B., Kutzera, F., Wiedemann, P., Wolburg, H., Reichenbach, A. & Bringmann, A. (2004). A potassium channel-linked mechanism of glial cell swelling in the postischemic retina. Molecular and Cellular Neurosciences 26, 493502.CrossRefGoogle ScholarPubMed
Papadopoulos, M.C. & Verkman, A.S. (2005). Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. The Journal of Biological Chemistry 280, 1390613912.CrossRefGoogle ScholarPubMed
Patil, R.V., Saito, I., Yang, X. & Wax, M.B. (1997). Expression of aquaporins in the rat ocular tissue. Experimental Eye Research 64, 203209.CrossRefGoogle ScholarPubMed
Preston, G.M., Carroll, T.P., Guggino, W.B. & Agre, P. (1992). Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385387.CrossRefGoogle ScholarPubMed
Robson, J.G. & Frishman, L.J. (1998). Dissecting the dark-adapted electroretinogram. Documenta Ophthalmologica 95, 187215.CrossRefGoogle ScholarPubMed
Ruiz, A. & Bok, D. (1996). Characterization of the 3′ UTR sequence encoded by the AQP-1 gene in human retinal pigment epithelium. Biochimica et Biophysica Acta 1282, 174178.CrossRefGoogle ScholarPubMed
Ruiz-Ederra, J., Zhang, H. & Verkman, A.S. (2007). Evidence against functional interaction between aquaporin-4 water channels and Kir4.1 potassium channels in retinal Muller cells. The Journal of Biological Chemistry 282, 2186621872.CrossRefGoogle ScholarPubMed
Seet, B., Wong, T.Y., Tan, D.T., Saw, S.M., Balakrishnan, V., Lee, L.K. & Lim, A.S. (2001). Myopia in Singapore: Taking a public health approach. The British Journal of Ophthalmology 85, 521526.CrossRefGoogle ScholarPubMed
Sharma, S., Ball, S.L. & Peachey, N.S. (2005). Pharmacological studies of the mouse cone electroretinogram. Visual Neuroscience 22, 631636.CrossRefGoogle ScholarPubMed
Shih, Y.F., Fitzgerald, M.E., Norton, T.T., Gamlin, P.D., Hodos, W. & Reiner, A. (1993). Reduction in choroidal blood flow occurs in chicks wearing goggles that induce eye growth toward myopia. Current Eye Research 12, 219227.CrossRefGoogle ScholarPubMed
Stamer, W.D., Bok, D., Hu, J., Jaffe, G.J. & McKay, B.S. (2003). Aquaporin-1 channels in human retinal pigment epithelium: Role in transepithelial water movement. Investigative Ophthalmology & Visual Science 44, 28032808.CrossRefGoogle ScholarPubMed
Stein, W.D. (2002). Cell volume homeostasis: Ionic and nonionic mechanisms. The sodium pump in the emergence of animal cells. International Review of Cytology 215, 231258.CrossRefGoogle ScholarPubMed
Steinberg, R.H., Oakley, B. II & Niemeyer, G., (1980). Light-evoked changes in [K+]0 in retina of intact cat eye. Journal of Neurophysiology 44, 897921.CrossRefGoogle Scholar
Strauss, O. (2005). The retinal pigment epithelium in visual function. Physiological Reviews 85, 845881.CrossRefGoogle ScholarPubMed
Takata, K., Matsuzaki, T. & Tajika, Y. (2004). Aquaporins: Water channel proteins of the cell membrane. Progress in Histochemistry and Cytochemistry 39, 183.CrossRefGoogle ScholarPubMed
Tenckhoff, S., Hollborn, M., Kohen, L., Wolf, S., Wiedemann, P. & Bringmann, A. (2005). Diversity of aquaporin mRNA expressed by rat and human retinas. Neuroreport 16, 5356.CrossRefGoogle ScholarPubMed
To, C.H., Kong, C.W., Chan, C.Y., Shahidullah, M. & Do, C.W. (2002). The mechanism of aqueous humour formation. Clinical & Experimental Optometry 85, 335349.Google ScholarPubMed
Uckermann, O., Vargova, L., Ulbricht, E., Klaus, C., Weick, M., Rillich, K., Wiedemann, P., Reichenbach, A., Sykova, E. & Bringmann, A. (2004). Glutamate-evoked alterations of glial and neuronal cell morphology in the guinea pig retina. The Journal of Neuroscience 24, 1014910158.CrossRefGoogle ScholarPubMed
Verkman, A.S. (2002). Physiological importance of aquaporin water channels. Annals of Medicine 34, 192200.CrossRefGoogle ScholarPubMed
Verkman, A.S. (2003). Role of aquaporin water channels in eye function. Experimental Eye Research 76, 137143.CrossRefGoogle ScholarPubMed
Verkman, A.S. (2005). Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Reviews of Physiology, Biochemistry and Pharmacology 155, 3155.CrossRefGoogle ScholarPubMed
Verkman, A.S., Ruiz-Ederra, J. & Levin, M.H. (2008). Functions of aquaporins in the eye. Progress in Retinal and Eye Research 27, 420433.CrossRefGoogle ScholarPubMed
Zeidel, M.L., Ambudkar, S.V., Smith, B.L. & Agre, P. (1992). Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31, 74367440.CrossRefGoogle ScholarPubMed
Zeng, X.N., Sun, X.L., Gao, L., Fan, Y., Ding, J.H. & Hu, G. (2007). Aquaporin-4 deficiency down-regulates glutamate uptake and GLT-1 expression in astrocytes. Molecular and Cellular Neurosciences 34, 3439.CrossRefGoogle ScholarPubMed
Zeuthen, T., Hamann, S. & la Cour, M. (1996). Cotransport of H+, lactate and H2O by membrane proteins in retinal pigment epithelium of bullfrog. The Journal of Physiology 497(Pt 1), 317.CrossRefGoogle ScholarPubMed