Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T15:02:48.728Z Has data issue: false hasContentIssue false

Terpenoid quinones and steroids in the nutrition of Oxyrrhis marina

Published online by Cambridge University Press:  11 May 2009

M. R. Droop
Affiliation:
Scottish Marine Biological Associations Oban, Scotland
J. F. Pennock
Affiliation:
Department Of Biochemistry, University Of Liverpool

Extract

INTRODUCTION

Oxyrrhis marina Dujardin is among the few phagotrophic micro-organisms, and the only dinoflagellate with this mode of nutrition, to have been cultivated under axenic conditions. In common with most other phagotrophs studied, Oxyrrhis had to be supplied with a natural source of lipid growth factors for axenic cultivation, lemon rind or grass extracts in this instance (Droop, 1959). The eventual replacement of these natural sources by ubiquinone (Droop & Doyle, 1966) cleared the way for the development of a completely denned culture medium for Oxyrrhis and the completion of the nutritional study, the water-soluble nutrients having been fully worked out previously (Droop, 1959). However, identification of this requirement immediately raises two questions. The answer to the first, whether ubiquinone is the only lipid required, appears to be in the negative, and the details of an additional, fairly specific, steroid requirement are presented in the second part of this paper. The other question concerns the specificity of the quinone requirement. Is the quinone merely a convenient source of the benzene ring – mammals require at least one aromatic compound in the diet – or does it act as a true growth factor, in which case the requirement would be unique and would have more than protozoological interest?

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. R., Lee, J. J., Hutner, S. H. & Storm, J., 1966. J. Protozool., Vol. 13, pp. 103–8.CrossRefGoogle Scholar
Brodie, A. F. & Watanabe, T., 1966. Vitam. Horm., Vol. 24, pp. 447–63.CrossRefGoogle Scholar
Cailleau, R., 1937. La nutrition des flagellés tétramitidés. Les sterols, facteurs de croissance pour les trichomonads. Annh Inst. Pasteur, Paris, T. 59, pp. 137–72 and 293–328.Google Scholar
Crane, F. L., 1965. Distribution of Quinones. In Biochemistry of Quinones, ed. Morton, R. A., pp. 183206. London and New York: Academic Press.Google Scholar
Crane, F. L. & Henninger, M. D., 1966. Function of quinones in photosynthesis. Vitam. Horm., Vol. 24, pp. 489517.CrossRefGoogle Scholar
Daves, G. D., Moore, H. W., Schwab, D. E., Olsen, R. K., Wilczynski, J. J. & Folkers, K., 1967 a. Synthesis of 2-multiprenylphenols and 2-multiprenyl-6-methoxyphenols, biosynthetic precursors of the ubiquinones. J. org. Chem., Vol. 32, pp. 1414–17.CrossRefGoogle Scholar
Daves, G. D., Muraca, R. F., Whittick, J. S., Friis, P. & Folkers, K., 1967 b. Discovery of ubiquinones-1, -2, -3 and -4 and the nature of biosynthetic isoprenylation. Biochemistry, N. Y., Vol. 6, pp. 2861–6.CrossRefGoogle ScholarPubMed
Droop, M. R., 1953. Phagotrophy on Oxyrrhis marina Dujardin. Nature, Lond., Vol. 172, p. 250.CrossRefGoogle ScholarPubMed
Droop, M. R., 1959. Water-soluble factors in the nutrition of Oxyrrhis marina. J. mar. biol. Ass., U.K., Vol. 38, pp. 605–20.CrossRefGoogle Scholar
Droop, M. R. & Doyle, J., 1966. Ubiquinone as a protozoan growth factor. Nature, Lond., Vol. 212, pp. 1474–5.CrossRefGoogle Scholar
Dunphy, P. J., Whittle, K. J. & Pennock, J. F., 1966. Plastochromanol: isolation and identification of plastochromanol. In Biochemistry of Chloroplasts, ed. Goodwin, T. W., pp. 165–71. London and New York: Academic Press.Google Scholar
Edward, D. G. FF. & Fitzgerald, W. A., 1951. Cholesterol in the growth of organisms of the Pleuropneumonia group. J. gen. Microbiol., Vol. 5, pp. 576–86.CrossRefGoogle ScholarPubMed
Friis, P., Daves, G. D. & Folkers, K., 1966. Complete sequence of biosynthesis from p-hydroxybenzoic acid to ubiquinone J. Am. chem. Soc, Vol. 88, pp. 4754–6.CrossRefGoogle Scholar
Gloor, U. & Wiss, O., 1959. Influence of vitamin A deficiency on the biosynthesis of cholesterol, squalene and ubiquinone. Biochem. biophys. Res. Commun, Vol. 1, pp. 182–5.CrossRefGoogle Scholar
Griffiths, W. T., Wallwork, J. C. & Pennock, J. F., 1966. Presence of a series of plastoquinones in plants. Nature, Lond., Vol. 211, pp. 1037–9.CrossRefGoogle Scholar
Holz, G. G., Erwin, J., Wagner, B. & Rosenbaum, N., 1962. The nutrition of Tetrahymena setifera HZ-1: sterol and alcohol requirements. J. Protozool., Vol. 9, pp. 359–63.CrossRefGoogle Scholar
House, H. L., 1965. Insect nutrition. In The Physiology of Insecta, ed. Rockstein, M., Vol. 2, pp. 769813. New York and London: Academic Press.Google Scholar
Isler, O. & Montavon, M., 1965. La chimie des vitamins E et K et des quinones apparentées a chaine isoprenoide. Bull. Soc. chim. Fr., 1965, pp. 2403–13.Google Scholar
Isler, O., Schudel, P., Mayer, H., Wursch, J. & Ruegg, R., 1962. Chemistry of vitamin E. Vitam. Horm., Vol. 20, pp. 389405.CrossRefGoogle Scholar
Laidman, D. L., Morton, R. A., Paterson, J. Y. F. & Pennock, J. F., 1960. Substance SC (ubichromenol): a naturally-occurring cyclic isomeride of ubiquinone-50. Biochem. J., Vol. 74, pp. 541–9.CrossRefGoogle ScholarPubMed
Lederer, E. & Vilkas, M., 1966. Phosphorylation of derivatives of the vitamin K group. Vitam. Horm., Vol. 24, pp. 409–26.CrossRefGoogle ScholarPubMed
Linn, B. O., Trenner, N. R., Arison, B. H., Weston, R. G., Skunk, C. H. & Folkers, K., 1960. Coenzyme Q. XII. Ethoxy homologs of coenzyme Q10. Artifact of isolation. J. Am. chem. Soc, Vol. 82, pp. 1647–51.CrossRefGoogle Scholar
Martius, C. 1962. Metabolism of Vitamin E based on tissue analysis. Vitam. Horm., Vol. 20, pp. 475–62.Google Scholar
Mayer, H., Metzger, J. & Isler, O., 1967. Uber die Chemie des Vitamins E. VIII: Die Stereochemie von natiirlichem γ-Tocotrienol (Plastochromanol-3), Plastochromanol-8 und Plastochromenol-8. Helv. chim. Acta, Bd. 50, pp. 1376–93.CrossRefGoogle Scholar
Mchale, D. & Green, J., 1965. Chrom-3-en-6-ols. The action of pyridine on alk-2-enylbenzoquinones. J. chem. Soc, 1965, pp. 5060–4.CrossRefGoogle Scholar
Moore, H. W. & Folkers, K., 1966. Structure of rhodoquinone. J. Am. chem. Soc, Vol. 88, pp. 567–70.CrossRefGoogle Scholar
Page, A. C., Gale, P. H., Wallick, H., Walton, R. B., Mcdaniel, L. E., Woodruff, H. B. & Folkers, K., 1960. Coenzyme Q. XVII: Isolation of coenzyme Q10 from bacterial fermentation. Archs Biochem. Biophys., Vol. 89, pp. 318–21.CrossRefGoogle Scholar
Parson, W. W. & Rudney, H., 1965. The biosynthesis of ubiquinone and rhodoquinone from p-hydroxybenzoate and p-hydroxybenzaldehyde in Rhodospirillum rubrum. J. biol. Chem., Vol. 240, pp. 1855–63.CrossRefGoogle ScholarPubMed
Powls, R. & Hemming, F. W., 1966 a. The properties and significance of rhodoquinone-9 in autotrophic and etiolated cultures of Euglena gracilis var bacillaris. Phytochem., Vol. 5, pp. 1235–47.CrossRefGoogle Scholar
Powls, R. & Hemming, F. W., 1966 b. The biosynthesis of quinones from p-hydroxybenzoic acid in Euglena gracilis var bacillaris. Phytochem., Vol. 5, pp. 1249–55.CrossRefGoogle Scholar
Rees, C. W., Bozicevich, J., Reardon, L. V. & Daft, F. S., 1944. The influence of cholesterol and certain vitamins on the growth of Endamoeba histolytica with a single species of bacteria. Am. J. trap. Med., Vol. 24, pp. 189–93.Google Scholar
Redfearn, E. R., 1966. Mode of action of ubiquinones (coenzymes Q) in electron transport systems. Vitam. Horm., Vol. 24, pp. 465–88.CrossRefGoogle ScholarPubMed
Rowland, R. L., 1958. Flue-cured tobacco. Ill: Solanochromene and a-tocopherol. J. Am. chem. Soc, Vol. 86, pp. 6130–33.CrossRefGoogle Scholar
Schudel, P., Mayer, H., Metzger, J., Rüegg, R. & Isler, O., 1963. Über die Chemie des Vitamins E. V: Die Synthese von rac. all-trans-ζ1, -und -∊-Tocopherol. Helv. chim. Acta, Vol. 46, pp. 2517–26.CrossRefGoogle Scholar
Scudi, J. V. & Buchs, R. P., 1942. Determination of the tocopherols and the tocopherylquinones by the colorimetric oxidation method. J. biol. Chem., Vol. 146, pp. 16.CrossRefGoogle Scholar
Stoffel, W. & Martius, C., 1960. Über den Mechanismus der Bildung von Vitaminen der K2-Reihe von Ubichinonen durch enzymatische Alkylierung der entsprechenden in 3-Stellung unsubstituierten Chinone. Biochem. Z., Bd. 333, pp. 440–53.Google Scholar
Van Wagtendonk, W. J., 1955. Nutrition of ciliates. In Biochemistry and Physiology of Protozoa, Vol. 2, ed. Lwoff, A. and Hutner, S. H., pp. 57–84. New York: Academic Press.Google Scholar
Van Wagtendonk, W. J. & Wulzen, R., 1950. Physiological and chemical aspects of the antistifmess factor essential for guinea pigs. Vitam. Harm., Vol. 8, pp. 70126.Google ScholarPubMed
Vishniac, H. S. & Watson, S. W., 1953. The steroid requirements of Labyrinthula vitellina var pacifica. J. gen. Microbiol., Vol. 8, pp. 248–55.CrossRefGoogle ScholarPubMed
Wallwork, J. C. & Pennock, J. F., 1969. Some studies on the chemistry and interrelationships of plastoquinones. In Progress in Photosynthesis Research, ed. Metzner, H., vol. 1, pp. 315–24. Publication sponsored by I.U.B.S., Tubingen, 1969.Google Scholar
Whittle, K. J., Dunphy, P. J. & Pennock, J. F., 1965. Plastochromanol in the leaves of Hevea brasiliensis. Biochem. J., Vol. 96, pp. 17c–19c.CrossRefGoogle ScholarPubMed
Williams, B. L., Goodwin, T. W. & Ryley, J. F., 1966. The sterol content of some protozoa. J. ProtozooL, Vol. 13, pp. 227–9.CrossRefGoogle ScholarPubMed