Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T14:51:51.076Z Has data issue: false hasContentIssue false

Prospective memory in amnestic mild cognitive impairment

Published online by Cambridge University Press:  01 May 2009

STELLA KARANTZOULIS*
Affiliation:
Department of Neurology, New York University Medical Center, New York, New York
ANGELA K. TROYER
Affiliation:
Cognitive and Behavioural Health Program, Baycrest Center for Geriatric Care, Toronto, Ontario, Canada
JILL B. RICH
Affiliation:
Cognitive and Behavioural Health Program, Baycrest Center for Geriatric Care, Toronto, Ontario, Canada Department of Psychology, York University, Toronto, Ontario, Canada
*
*Correspondence and reprint requests to: Stella Karantzoulis, 245 East 54th Street, Suite 8B, New York, New York 10022. E-mail: skarantz@gmail.com

Abstract

Individuals with amnestic mild cognitive impairment (aMCI) often complain of difficulty remembering to carry out intended actions, consistent with findings of impaired prospective memory (PM) in this population. In this study, individuals with aMCI (N = 27) performed worse than healthy controls (N = 27) on the Memory for Intentions Screening Test (Raskin, 2004), including on time- and event-based subscales, and recognition of the intentions. The aMCI participants made more errors overall, but the proportion of the various error types did not differ between the two groups. Across all error types, both groups made more retrospective than prospective errors, especially on event-based PM tasks. Overall, the findings suggest that PM impairment in aMCI is associated with deficient cue detection involving both automatic (as in event-based tasks) and more strategic detection (as in time-based tasks) processes. These difficulties are likely due to a combination of problematic retrospective episodic memory (e.g., reduced encoding and/or consolidation of cue–intention pairings) and executive functions (e.g., decreased self-initiation, attention switching, and/or inhibition on memory tasks). Formal assessment of PM may help characterize the nature of the memory impairment among individuals with aMCI in clinical neuropsychological evaluations. (JINS, 2009, 15, 407–415.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Botvinick, M., Braver, T.S., Barch, D.M., Carter, C.S., & Cohen, J.D. (2001). Conflict monitoring and cognitive control. Psychology Review, 108, 624652.CrossRefGoogle ScholarPubMed
Brandt, J. & Benedict, R.H.B. (2001). Hopkins Verbal Learning Test-Revised. Lutz, FL: Psychological Assessment Resources.Google Scholar
Burgess, P.W., Quayle, A., & Frith, C.D. (2001). Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia, 39, 545555.CrossRefGoogle ScholarPubMed
Chetelat, G., Desgranges, B., de la Sayette, V., Viader, F., Berkouk, K., Landeau, B., Lalevee, C., Le Doze, F.L., Dupuy, B., Hannequin, D., Baron, J.-C., & Eustache, F. (2003). Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain, 126, 19551967.CrossRefGoogle ScholarPubMed
Dannhauser, T.M., Walker, Z., Stevens, T., Lee, L., Seal, M., & Shergill, S. (2005). The functional anatomy of divided attention in amnestic mild cognitive impairment. Brain, 128, 14181427.CrossRefGoogle ScholarPubMed
Einstein, G.O. & McDaniel, M.A. (1996). Retrieval processes in prospective memory: Theoretical approaches and some new empirical findings. In Brandimonte, M.A., Einstein, G.O. & McDaniel, M.A. (Eds.), Prospective memory: Theory and applications (pp. 115141). Mahwah, NJ: Erlbaum.Google Scholar
Ellis, J.A. (1996). Prospective memory or the realization of delayed intentions: A conceptual framework for research. In Brandimonte, M., Einstein, G.O. & McDaniel, M.A. (Eds.), Prospective memory: Theory and applications (pp. 122). Mahwah, NJ: Erlbaum.Google Scholar
Elliott, R., & Dolan, R.J.(1998). Neural response during preference and memory judgments for subliminally presented stimuli: A functional neuroimaging study Journal of Neuroscience, 18 46974704.CrossRefGoogle ScholarPubMed
Glisky, E.L., Polster, M.R., & Routhieaux, B.C. (1995). Double dissociation between item and source memory. Neuropsychology, 9, 229235.CrossRefGoogle Scholar
Graf, P., Uttl, B., & Dixon, R. (2002). Prospective and retrospective memory in adulthood. In Graf, P. & Ohta, N. (Eds.), Lifespan development of human memory (pp. 257282). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Hart, R.P., Kwentus, J.A., Wade, J.B., & Taylor, J.R. (1988). Modified Wisconsin Card Sorting Test in elderly normal, depressed and demented patients. The Clinical Neuropsychologist, 2, 4956.CrossRefGoogle Scholar
Ivnik, R.J., Malec, J.F., Smith, G.E., & Tangalos, E.G. (1992). Mayo’s older Americans normative studies: WMS-R norms for ages 56-94. The Clinical Neuropsychologist, 6(Suppl.), 4982.CrossRefGoogle Scholar
Johnson, K.A., Jones, K., Holman, B.L., Becker, J.A., Spiers, P.A., Satlin, A., & Albert, M. (1998). Preclinical prediction of Alzheimer’s disease using SPECT. Neurology, 50, 15631572.CrossRefGoogle ScholarPubMed
Johns, E., Phillips, N.A., Belleville, S., Goupil, D., Babbins, L., Keiner, N., Ska, B., Gilbert, B., Inglis, G., Massoud, F., Panisset, M., De Boysson, C., & Chertkow, H. (2008). Disproportionate deficits in inhibitory control: Profile of executive functioning in mild cognitive impairment. Abstract presented at the 36th Annual Conference of the International Neuropsychological Society, Waikoloa, HawaiiGoogle Scholar
Kaplan, E.F., Goodglass, H., & Weintraub, S. (1983). The Boston Naming Test (2nd ed.). Philadelphia, PA: Lea & Febiger.Google Scholar
Kazui, H., Matsuda, A., Hirono, N., Mori, E., Miyoshi, N., Ogino, A., Tokunaga, H., Ikejiri, Y., & Takeda, M. (2005). Everyday memory impairment of patients with mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 19, 331337.CrossRefGoogle ScholarPubMed
Killiany, R., Gomez-Isla, T., Moss, M., Kikinis, R., Sandor, T., Jolesz, F., Tanzi, R., Jones, K., Hyman, B.T., & Albert, M.S. (2000). Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Annals of Neurology, 47, 430439.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Kliegel, M., Martin, M., McDaniel, M.A., & Einstein, G.O. (2001). Varying the importance of a prospective memory task: Differential effects across time- and event-based prospective memory. Memory, 9, 111.CrossRefGoogle ScholarPubMed
Kogure, D., Matsuda, H., Ohnishi, T., Asada, T., Uno, M., Kunihiro, T., Nakano, S., & Takasaki, M. (2000). Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. Journal of Nuclear Medicine, 41, 11551162.Google ScholarPubMed
Kramer, J.H., Nelson, A., Johnson, J.K., Yaffe, K., Glenn, S., Rosen, H.J., & Miller, B.L. (2006). Multiple cognitive deficits in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22, 306311.CrossRefGoogle ScholarPubMed
Lawton, P. & Brody, E.M. (1969). Assessment of older people: Self-maintaining and instrumental activities of daily living. The Gerontologist, 9, 179186.CrossRefGoogle ScholarPubMed
Levinoff, E.J., Saumier, D., & Chertkow, H. (2005). Focused attention deficits in patients with Alzheimer’s disease and mild cognitive impairment. Brain and Cognition, 57, 127130.CrossRefGoogle ScholarPubMed
Lezak, M.D. (1995). Neuropsychological assessment (3rd ed.). New York, NY: Oxford University Press.Google Scholar
Lucas, J.A., Ivnik, R.J., Smith, G.E., Bohac, D.L., Tangalos, E.G., Kokmen, E., Graff-Radford, N.R., & Petersen, R.C. (1998). Normative data for Mattis Dementia Rating Scale. Journal of Clinical and Experimental Neuropsychology, 20, 536547.CrossRefGoogle ScholarPubMed
Lucas, J.A., Ivnik, R.J., Smith, G.E., Bohac, D.L., Tangalos, E.G., Kokmen, E., Graff-Radford, N.R. & Petersen, R.C. (1998). Normative data for Mattis Dementia Rating Scale. Journal of Clinical and Experimental Neuropsychology, 20, 536547.CrossRefGoogle ScholarPubMed
Mattis, S. (1988). Dementia Rating Scale [Manual]. Odessa, FL: Psychological Assessment Resources.Google Scholar
Nelson, H.E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12, 313324.CrossRefGoogle ScholarPubMed
Nyberg, L. & Tulving, E. (1996). Classifying human long-term memory: Evidence from converging dissociations. European Journal of Cognitive Psychology, 8, 163183.CrossRefGoogle Scholar
Pennanen, C., Kivipelto, M., Tuomainen, S., Hartikainen, P., Hanninen, T., Laakso, M.P., & Soininen, H. (2004). Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiology of Aging, 25, 303310.CrossRefGoogle ScholarPubMed
Perri, R., Carlesimo, G.A., Serra, L., & Caltagirone, C. (2005). Characterization of memory profile in subjects with mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 27, 10331055.CrossRefGoogle ScholarPubMed
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.CrossRefGoogle ScholarPubMed
Raskin, S. (2004). Memory for Intentions Screening Test [Abstract]. Journal of the International Neuropsychological Society, 10(Suppl. 1), 110.Google Scholar
Spreen, O. & Benton, A.L. (1977). Neurosensory Center Comprehensive Examination for Aphasia. Victoria, BC: University of Victoria Neuropsychology Laboratory.Google Scholar
Sutherland, R.J., Wishaw, I.Q., & Kolb, B. (1988). Contributions of the cingulate cortex to two forms of spatial learning and memory. Journal of Neuroscience, 8, 18631872.CrossRefGoogle ScholarPubMed
Tabert, M.H., Manly, J.J., Xinhua, L., Pelton, G.H., Rosenblum, S., Jacobs, M., Zamora, D., Goodkind, M., Bell, K., Stern, Y., & Devanand, D.P. (2006). Neuropsychological prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Archives of General Psychiatry, 63, 916924.CrossRefGoogle ScholarPubMed
Troyer, A.K. & Murphy, K.J. (2007). Memory for intentions in amnestic mild cognitive impairment: Time- and event-based prospective memory. Journal of the International Neuropsychological Society, 13, 365369.CrossRefGoogle ScholarPubMed
Wechsler, D. (1981). Wechsler Memory Scale. New York, NY: The Psychological Corporation.Google Scholar
Wechsler, D. (1987). Wechsler Memory Scale-Revised. New York, NY: The Psychological Corporation.Google Scholar
Welsh, K.A., Breitner, J.C.S., & Magruder-Habib, K.M. (1993) Detection of dementia in the elderly using telephone screening of cognitive status Neuropsychiatry, Neuropsychology, and Behavioral Neurology 6, 103110.Google Scholar
Woods, S.P., Iudicello, J.E., Moran, L.M., Carey, C.L., Dawson, M.S., Grant, I., & The HNRC Group. (2009). HIV-associated prospective memory impairment increases risk of dependence in everyday functioning. Neuropsychology, 22, 110117.CrossRefGoogle Scholar
Woods, S.P., Moran, L.M., Carey, C.L., Dawson, M.S., Iudicello, J.E., Gibson, S., Grant, I., Atkinson, J.H., & The HIV Neurobehavioral Research Center Group. (2008). Prospective memory in HIV infection: Is “remembering to remember” a unique predictor of self-reported medication management? Archives of Clinical Neuropsychology, 23, 257270.CrossRefGoogle Scholar
Zachary, R.A. (1986). Shipley Institute of Living Scale. Revised manual. Los Angeles, CA: Western Psychological Services.Google Scholar
Zigmond, A.S. & Snaith, R.P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67, 361370.CrossRefGoogle ScholarPubMed