Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T16:03:22.351Z Has data issue: false hasContentIssue false

Diagnostic methods based on scattering polarization and the joint action of the Hanle and Zeeman effects

Published online by Cambridge University Press:  01 November 2008

Javier Trujillo Bueno*
Affiliation:
Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain Consejo Superior de Investigaciones Científicas (Spain) email: jtb@iac.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Polarized light provides the most reliable source of information at our disposal for diagnosing the physical properties of astrophysical plasmas, including the magnetic fields of the solar atmosphere. The interaction between radiation and hydrogen plus free electrons through Rayleigh and Thomson scattering gives rise to the polarization of the stellar continuous spectrum, which is very sensitive to the medium's thermal and density structure. Anisotropic radiative pumping processes induce population imbalances and quantum coherences among the sublevels of degenerate energy levels (that is, atomic level polarization), which produce polarization in spectral lines without the need of a magnetic field. The Hanle effect caused by the presence of relatively weak magnetic fields modifies the atomic polarization of the upper and lower levels of the spectral lines under consideration, allowing us to detect magnetic fields to which the Zeeman effect is blind. After discussing the physical origin of the polarized radiation in stellar atmospheres, this paper highlights some recent developments in polarized radiation diagnostic methods and a few examples of their application in solar physics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Asensio Ramos, A., Trujillo Bueno, J., & Landi Degl'Innocenti, E. 2008, ApJ 683, 542CrossRefGoogle Scholar
Centeno, R., Trujillo Bueno, J., & Asensio Ramos, A. 2009, ApJ, in preparationGoogle Scholar
Chandrasekhar, S. 1960, Radiative Transfer, Dover Publications, Inc.Google Scholar
Happer, W. 1972, Rev. Mod. Phys. 44, 169CrossRefGoogle Scholar
Landi Degl'Innocenti, E. & Landolfi, M. 2004, Polarization in Spectral Lines, KluwerCrossRefGoogle Scholar
Manso Sainz, R. & Trujillo Bueno, J. 2003a, Phys. Rev. Lett. 91, 111102CrossRefGoogle Scholar
Manso Sainz, R. & Trujillo Bueno, J. 2003b, in ASP Conf. Ser. Vol. 307, Solar Polarization, ed. Trujillo Bueno, J. & Sánchez Almeida, J., 251Google Scholar
Manso Sainz, R. & Trujillo Bueno, J. 2009, ApJ, in preparationGoogle Scholar
Stenflo, J. O. 1994, Solar Magnetic Fields: Polarized Radiation Diagnostics (Dordrecht: Kluwer)CrossRefGoogle Scholar
Stenflo, J. O. 2005, A&A 429, 713Google Scholar
Stenflo, J. O., Keller, C. U., & Gandorfer, A. 2000, A&A 355, 789Google Scholar
Trujillo Bueno, J. 1999, in ASSL 243, Solar Polarization, ed. Nagendra, K. N. & Stenflo, J. O., Dordrecht, Kluwer, p.73CrossRefGoogle Scholar
Trujillo Bueno, J. 2001, in ASP Conf. Ser. Vol. 236, Advanced Solar Polarimetry: Theory, Observation and Instrumentation, ed. Sigwarth, M. (San Francisco: ASP), 161Google Scholar
Trujillo Bueno, J. & Asensio Ramos, A. 2007, ApJ 655, 642CrossRefGoogle Scholar
Trujillo Bueno, J. & Shchukina, N. 2009, ApJ, in pressGoogle Scholar
Trujillo Bueno, J., Landi Degl'Innocenti, E., Collados, M., Merenda, L., & Manso Sainz, R. 2002, Nature 415, 403CrossRefGoogle Scholar
Trujillo Bueno, J., Shchukina, N., & Asensio Ramos, A. 2004, Nature 430, 326CrossRefGoogle Scholar