Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T02:23:54.024Z Has data issue: false hasContentIssue false

Cosmic-ray driven dynamo in galactic disks

Published online by Cambridge University Press:  01 November 2008

Michał Hanasz
Affiliation:
Centre for Astronomy, Nicholas Copernicus University, PL-87148 Piwnice/Toruń, Poland, mhanasz@astri.uni.torun.pl
K. Otmianowska-Mazur
Affiliation:
Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków
H. Lesch
Affiliation:
Astronomical Observatory, Munich University, Scheinerstr. 1, D-81679, Germany
G. Kowal
Affiliation:
Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków Department of Physics and Astronomy, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4M1, Canada.
M. Soida
Affiliation:
Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków
D. Wóltański
Affiliation:
Centre for Astronomy, Nicholas Copernicus University, PL-87148 Piwnice/Toruń, Poland, mhanasz@astri.uni.torun.pl
K. Kowalik
Affiliation:
Centre for Astronomy, Nicholas Copernicus University, PL-87148 Piwnice/Toruń, Poland, mhanasz@astri.uni.torun.pl
R. K. Pawłaszek
Affiliation:
Centre for Astronomy, Nicholas Copernicus University, PL-87148 Piwnice/Toruń, Poland, mhanasz@astri.uni.torun.pl
B. Kulesza-Żydzik
Affiliation:
Astronomical Observatory, Jagiellonian University, ul. Orla 171, 30-244, Kraków
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present new developments on the Cosmic–Ray driven, galactic dynamo, modeled by means of direct, resistive CR–MHD simulations, performed with ZEUS and PIERNIK codes. The dynamo action, leading to the amplification of large–scale galactic magnetic fields on galactic rotation timescales, appears as a result of galactic differential rotation, buoyancy of the cosmic ray component and resistive dissipation of small–scale turbulent magnetic fields. Our new results include demonstration of the global–galactic dynamo action driven by Cosmic Rays supplied in supernova remnants. An essential outcome of the new series of global galactic dynamo models is the equipartition of the gas turbulent energy with magnetic field energy and cosmic ray energy, in saturated states of the dynamo on large galactic scales.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Beck, R. 2008, Ap&SS, in press (arXiv:astro-ph/0711.4700)Google Scholar
Berezinskii, V. S., Bulanov, S. V., Dogiel, V. A., Ginzburg, V. L., & Ptuskin, V. S.Astrophysics of cosmic rays, Amsterdam: North-Holland, 1990.Google Scholar
Cassak, P. A., Drake, J. F., & Shay, M. A. 2006, ApJ 644, L145CrossRefGoogle Scholar
Giacalone, J. & Jokipii, R. J. 1999, ApJ 520, 204CrossRefGoogle Scholar
Ferrière, K. 1998, ApJ 497, 759CrossRefGoogle Scholar
Gressel, O., Ziegler, U., Elstner, D., & Rüdiger, G. 2008, AN 329, 61Google Scholar
Gressel, O., Elstner, D., Ziegler, U., & Rüdiger, G. 2008, A&A 486, L35Google Scholar
Hanasz, M., Otmianowska–Mazur, K., & Lesch, H. 2002, A&A 386, 347Google Scholar
Hanasz, M. & Lesch, H. 2003, A&A 412, 331Google Scholar
Hanasz, M., Kowal, G., Otmianowska–Mazur, K., & Lesch, H. 2004, ApJ 605, L33CrossRefGoogle Scholar
Hanasz, M., Kowal, G., Otmianowska–Mazur, K., & Lesch, H. 2006, AN 327, 469Google Scholar
Hanasz, M., Otmianowska–Mazur, K., Kowal, G., & Lesch, H. 2009, A&A, in press (arXiv:astro-ph/0812.3906)Google Scholar
Hanasz, M., Kowalik, K., Wóltański, D., & Pawłaszek, R. K. 2009, in: Goździewski, K. et al. (eds.) Extrasolar planets in multi–body systems: theory and observations, EAS Publications Series (submitted, arXiv:astro-ph/0812.2161)Google Scholar
Hanasz, M., Kowalik, K., Wóltański, D., & Pawłaszek, R. K. 2009, in: Goździewski, K. et al. (eds.) Extrasolar planets in multi–body systems: theory and observations, EAS Publications Series (submitted, arXiv:astro-ph/0812.2799)Google Scholar
Hanasz, M., Kowalik, K., Wóltański, D., & Pawłaszek, R. K., 2009, in: de Avillez, M. et al. (eds.), The Role of Disk–Halo Interaction in Galaxy Evolution: Outflow vs Infall?, (submitted, arXiv:astro-ph)Google Scholar
Hanasz, M., Kowalik, K., Wóltański, D., & Pawłaszek, R. K., 2009, in: Avillez, M. de et al. (eds.), The Role of Disk–Halo Interaction in Galaxy Evolution: Outflow vs Infall?, (submitted, arXiv:astro-ph)Google Scholar
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ 440, 442CrossRefGoogle Scholar
Jones, T. W., Rudnick, L., Jun, B.–I., Borkowski, K. J., Dubner, G., Frail, D. A., Kang, H., Kassim, N. E., & McCray, R. 1998, PASP 110, 125CrossRefGoogle Scholar
Jin, S. & Xin, Z. 1995, Comm. Pure Appl. Math. 48, 235CrossRefGoogle Scholar
Kronberg, P. P., Bernet, M. L., Miniati, F., Lilly, S. J., Short, M. B., & Higdon, D. M. 2008, ApJ 676, 70CrossRefGoogle Scholar
Lazarian, A., Vishniac, E. T., & Cho, J. 2004, ApJ 603, 180LCrossRefGoogle Scholar
Otmianowska-Mazur, K., Kowal, G., & Hanasz, M., 2007, ApJ 668, 1100CrossRefGoogle Scholar
Otmianowska–Mazur, K., Soida, M., Kulesza–ŻZydzik, B., Hanasz, M., & Kowal, G. 2009, ApJ, in press (arXiv:astro-ph/0812.2150)Google Scholar
Parker, E. N. 1966, ApJ 145, 811CrossRefGoogle Scholar
Parker, E. N. 1992, ApJ 401, 137CrossRefGoogle Scholar
Pen, U.–L., Arras, P., & Wong, S. 2003, ApJS 149, 447CrossRefGoogle Scholar
Rees, M. J. 1987, QJRAS 28, 197Google Scholar
Ryu, D., Kim, J., Hong, S. S., & Jones, T. W. 2003, ApJ 589, 338CrossRefGoogle Scholar
Schlickeiser, R. & Lerche, I. 1985, A&A 151, 151Google Scholar
Widrow, L. M. 2002, Rev. Mod. Phys. 74, 775CrossRefGoogle Scholar
Wolfe, A. M., Lanzetta, K. M., & Oren, A. L. 1992, ApJ 388, 17CrossRefGoogle Scholar