Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-26T22:09:02.765Z Has data issue: false hasContentIssue false

The magnetic structure of our Galaxy: a review of observations

Published online by Cambridge University Press:  01 November 2008

JinLin Han*
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Jia-20 DaTun Road, Chaoyang District, Beijing 100012, China email: hjl@bao.ac.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The magnetic structure in the Galactic disk, the Galactic center and the Galactic halo can be delineated more clearly than ever before. In the Galactic disk, the magnetic structure has been revealed by starlight polarization within 2 or 3 kpc of the Solar vicinity, by the distribution of the Zeeman splitting of OH masers in two or three nearby spiral arms, and by pulsar dispersion measures and rotation measures in nearly half of the disk. The polarized thermal dust emission of clouds at infrared, mm and submm wavelengths and the diffuse synchrotron emission are also related to the large-scale magnetic field in the disk. The rotation measures of extragalactic radio sources at low Galactic latitudes can be modeled by electron distributions and large-scale magnetic fields. The statistical properties of the magnetized interstellar medium at various scales have been studied using rotation measure data and polarization data. In the Galactic center, the non-thermal filaments indicate poloidal fields. There is no consensus on the field strength, maybe mG, maybe tens of μG. The polarized dust emission and much enhanced rotation measures of background radio sources are probably related to toroidal fields. In the Galactic halo, the antisymmetric RM sky reveals large-scale toroidal fields with reversed directions above and below the Galactic plane. Magnetic fields from all parts of our Galaxy are connected to form a global field structure. More observations are needed to explore the untouched regions and delineate how fields in different parts are connected.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Armstrong, J. W., Rickett, B. J., & Spangler, S. R. 1995, ApJ 443, 209Google Scholar
Balsara, D. & Kim, J. 2005, ApJ 634, 390Google Scholar
Battaner, E. & Florido, E., 2007, AN 328, 92Google Scholar
Boulares, A. & Cox, D. 1990, ApJ 365, 544Google Scholar
Brown, J. C., Taylor, A. R., & Jackel, B. J. 2003, ApJS 145, 213Google Scholar
Brown, J. C., Haverkorn, M., Gaensler, B. M., et al. 2007, ApJ 663, 258Google Scholar
Caswell, J. L. 2003, MNRAS 341, 551Google Scholar
Chandran, B. D. G. 2001, ApJ 562, 737Google Scholar
Chuss, D. T., Davidson, J. A., Dotson, J. L., & et al. 2003, ApJ 599, 1116Google Scholar
Clegg, A. W., Cordes, J. M., Simonetti, J. M., & Kulkarni, S. R. 1992, ApJ 386, 143Google Scholar
Cordes, J. M. & Lazio, T. J. W. 2002, preprint (arXiv:astro-ph/0207156)Google Scholar
Crutcher, R. M. 1999, ApJ 520, 706Google Scholar
Feinstein, C., Vergne, M. M., Martńez, R., & Orsatti, A. M., 2008, MNRAS 391, 447Google Scholar
Fish, V. L., Reid, M. J., Agron, A. L., & Menten, K. M., 2003, ApJ 596, 328Google Scholar
Gaensler, B. M., Dickey, J. M., McClure-Griffiths, N. M., & et al. 2001, ApJ 549, 959Google Scholar
Hamilton, P. A. & Lyne, A. G. 1987, MNRAS 224, 1073Google Scholar
Han, J. L., 2004, In: The Magnetized Interstellar Medium, eds: Uyaniker, B., et al. , GmbH, p. 3,Google Scholar
Han, J. L. & Qiao, G. J. 1994, A&A 288, 759Google Scholar
Han, J. L., Beck, R., Ehle, M., Haynes, R. F., & Wielebinski, R., 1999a, A&A 348, 405Google Scholar
Han, J. L., Ferriere, K., & Manchester, R. N. 2004, ApJ 610, 820Google Scholar
Han, J. L., Manchester, R. N., Berkhuijsen, E. M., & Beck, R. 1997, A&A 322, 98Google Scholar
Han, J. L., Manchester, R. N., & Qiao, G. J. 1999b, MNRAS 306, 371Google Scholar
Han, J. L., Manchester, R. N., Lyne, A. G., & Qiao, G. J. 2002, ApJ 570, L17Google Scholar
Han, J. L., Manchester, R. N., Lyne, A. G., Qiao, G. J., & van Straten, W. 2006, ApJ 642, 868.Google Scholar
Han, J. L., Zhang, J. S. 2007, A&A 464, 609Google Scholar
Haverkorn, M., Gaensler, B. M., Brown, J. C., et al. 2006, ApJ 637, L33Google Scholar
Heiles, C. 1996, ApJ 462, 316Google Scholar
Heiles, C., 2000, AJ 119, 923Google Scholar
Heiles, C, & Crutcher, R. 2005, In: Cosmic Magnetic Fields, LNP 664, 137Google Scholar
Hildebrand, R. H., Davidson, J. A., Dotson, J. L., et al. , 2000, PASP 112, 1215Google Scholar
Indrani, C. & Deshpande, A. A. 1999, New Astronomy 4, 33Google Scholar
Junkes, N., Fürst, E., & Reich, W. 1987, A&AS 69, 451Google Scholar
Lang, C. C., Morris, M., & Echevarria, L. 1999, ApJ 526, 727Google Scholar
LaRosa, T. N., Brogan, C. L., Shore, S. N., et al. 2005, ApJ 626, L23Google Scholar
LaRosa, T. N., Nord, M. E., Lazio, T. J. W., & Kassim, N. E. 2004, ApJ 607, 302Google Scholar
Li, H., Griffin, G. S., Krejny, M., & et al. 2006, ApJ 648, 340Google Scholar
Lyne, A. G. & Smith, F. G. 1989, MNRAS 237, 533Google Scholar
Manchester, R. N. 1974, ApJ 188, 637Google Scholar
Mathewson, D. S. & Ford, V. L. 1970a, MemRAS 74, 139.Google Scholar
Men, H., Ferrière, K., & Han, J. L. 2008, A&A 486, 819Google Scholar
Minter, A. H. & Spangler, S. R. 1996, ApJ 458, 194Google Scholar
Mitra, D., Wielebinski, R., Kramer, M., & Jessner, A. 2003, A&A 398, 993Google Scholar
Morris, M., Serabyn, , 1996, ARA&A 34, 645Google Scholar
Morris, M., Uchida, K., & Do, T. 2006, Nature 440, 308Google Scholar
Nord, M. E., Lazio, T. J. W., Kassim, N. E., et al. 2004, AJ 128, 1646Google Scholar
Novak, G., Chuss, D. T., Renbarger, T., & et al. 2003, ApJ 583, L83Google Scholar
Noutsos, A., Johnston, S., Kramer, M., & Karastergiou, A. 2008, MNRAS 386, 1881Google Scholar
Ohno, H., Shibata, S., 1993, MNRAS 262, 953Google Scholar
Page, L., et al. , 2007, ApJS 170, 335Google Scholar
Plante, R. L., Lo, K. Y., & Crutcher, R. M., 1995, ApJ 445, L113Google Scholar
Prouza, M. & Smída, R. 2003, A&A 410, 1Google Scholar
Qiao, G. J., Manchester, R. N., Lyne, A. G., & Gould, D. M. 1995, MNRAS 274, 572Google Scholar
Rand, R. J. & Kulkarni, S. R. 1989, ApJ 343, 760Google Scholar
Rand, R. J. & Lyne, A. G. 1994, MNRAS 268, 497Google Scholar
Reich, W. 2007, in: Cosmic Polarization, (astro-ph/0603465), p.91Google Scholar
Reid, M. J. & Silverstein, E. M., 1990, ApJ 361, 483Google Scholar
Roy, S., Rao, A. P., & Subrahmanyan, R. 2005, MNRAS 360, 1305Google Scholar
Roy, S., Rao, A. P., & Subrahmanyan, R. 2008, A&A 478, 435Google Scholar
Sun, X. H. & Han, J. L. 2004, in: Magnetized Interstellar Medium, eds: Uyaniker, B., et al. , GmbH, p.25Google Scholar
Sun, X.H., Han, J.L., Reich, W., & et al. 2007, A&A 463, 993Google Scholar
Sun, X. H., Reich, W., Waelkens, A., & Enßlin, T. A. 2008, A&A 477, 573Google Scholar
Thomson, R. C. & Nelson, A. H. 1980, MNRAS 191, 863Google Scholar
Tinyakov, P. G. & Tkachev, I. I. 2002, Astroparticle Physics 18, 165Google Scholar
Weisberg, J. M., Cordes, J. M., Kuan, , et al. 2004, ApJS 150, 317Google Scholar
Yusef-Zadeh, F., Hewitt, J. W., & Cotton, W. A. 2004, ApJS 155, 421Google Scholar
Yusef-Zadeh, F., Morris, M., & Chance, D. 1984, Nature 310, 557Google Scholar
Yusef-Zadeh, F., Roberts, D. A., Goss, W. M., et al. 1999, ApJ 512, 230Google Scholar