Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T18:04:35.968Z Has data issue: false hasContentIssue false

The role of intrinsic magnetic fields in planetary evolution and habitability: the planetary protection aspect

Published online by Cambridge University Press:  01 November 2008

Maxim L. Khodachenko
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Graz, Austria email: maxim.khodachenko@oeaw.ac.at
H. Lammer
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Graz, Austria email: maxim.khodachenko@oeaw.ac.at
H. I. M. Lichtenegger
Affiliation:
Space Research Institute, Austrian Academy of Sciences, Graz, Austria email: maxim.khodachenko@oeaw.ac.at
J.-M. Grießmeier
Affiliation:
ASTRON, Dwingeloo, The Netherlands email: griessmeier@astron.nl
M. Holmström
Affiliation:
Swedish Institute of Space Physics, Kiruna, Sweden email: matsh@irf.se
A. Ekenbäck
Affiliation:
Swedish Institute of Space Physics, Kiruna, Sweden email: matsh@irf.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The widely used definition of a habitable zone (HZ) for planets as a circumstellar area, where the star's luminosity is sufficiently intense to maintain liquid water at the surface of a planet, is shown to be too simplified. The role of a host star's activity and the intrinsic magnetic field of a planet with respect to their influence on mass loss processes of close-in gas giants and a definition of a HZ for the terrestrial-type exoplanets are discussed. The stellar X-ray/EUV radiation and the stellar wind result in ionization, heating, chemical modification, and slow erosion of the planetary upper atmospheres throughout their lifetime. The closer the planet is to the star, the more efficient are these processes, and therefore, the more important becomes the magnetic protection of a planet as a potential habitat. Different ways for planetary magnetic dipole moment estimation, based on existing magnetic dynamo scaling laws as well as on the recent measurements of hot atomic hydrogen clouds around close-in ‘Hot Jupiters’ are considered, and the predictions of these estimations are compared to each other.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Audard, M., Güdel, M., Drake, J. J., & Kashyap, V. L. 2000, ApJ 541, 396CrossRefGoogle Scholar
Busse, F. H. 1976, Phys. Earth Planet. Int. 12 (4), 350CrossRefGoogle Scholar
Cully, S. L., Fisher, G. H., Abbott, M. J., & Siegmund, O. H. W. 1994, ApJ 435, 449CrossRefGoogle Scholar
Ekenbäck, A., Holmström, M., Wurz, P., Grießmeier, J.-M., Lammer, H., Selsis, F., & Penz, T. 2008, ApJ, submittedGoogle Scholar
Grießmeier, J.-M., Stadelmann, A., Penz, T., Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Motschmann, U., Biernat, H. K., & Weiss, W. W. 2004, A&A 425, 753Google Scholar
Grießmeier, J.-M., Stadelmann, A., Motschmann, U., Belisheva, N. K., Lammer, H., & Biernat, H. 2005, Astrobiology 5, 587CrossRefGoogle Scholar
Grießmeier, J.-M., Preusse, S., Khodachenko, M. L., Motschmann, U., Mann, G., & Rucker, H. O. 2007, Planet. & Space Sci. 55, 618CrossRefGoogle Scholar
Holmström, M., Ekenbäck, A., Selsis, F., Penz, T., Lammer, H., & Wurz, P. 2008, Nature 451, 970Google Scholar
Houdebine, E. R., Foing, B. H., & Rodonó, M. 1990, A&A 238, 249Google Scholar
Huang, S. S. 1960, PASP 72, 489Google Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus 101, 108Google Scholar
Kasting, J. F. 1997, Orig. Life Evol. Biosph. 27 (1/3), 291Google Scholar
Khodachenko, M. L., Ribas, I., Lammer, H., Grießmeier, J.-M., Leitner, M., Selsis, F., Eiroa, C., Hanslmeier, A., Biernat, H., Farrugia, C. J., & Rucker, H. 2007a, Astrobiology 7, 167CrossRefGoogle Scholar
Khodachenko, M. L., Lammer, H., Lichtenegger, H. I. M., Langmayr, D., Erkaev, N. V., Grießmeier, J.-M., Leitner, M., Penz, T., Biernat, H. K., Motschmann, U., & Rucker, H. O. 2007b, Planet. & Space Sci. 55, 631Google Scholar
Kulikov, Yu. N., Lammer, H., Lichtenegger, H. I. M., Penz, T., Breuer, D., Spohn, T., Lundin, R., & Biernat, H. K. 2007, Space Sci Rev. 129, 207Google Scholar
Lammer, H., Lichtenegger, H., Kulikov, Yu., Grießmeier, J.-M., Terada, N., Erkaev, N., Biernat, H., Khodachenko, M. L., Ribas, I., Penz, T., & Selsis, F. 2007, Astrobiology 7, 185CrossRefGoogle Scholar
Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Yu. N., & Tian, F. 2008, Space Sci Rev. 139, 399CrossRefGoogle Scholar
Lichtenegger, H. I. M., Lammer, H., & Stumptner, W. 2002, JGR 107 (A10), doi:10.1029/2001JA000322Google Scholar
Lichtenegger, H. I. M., Gröller, H., Lammer, H., Kulikov, Yu. N., & Shematovich, V. 2008, Geophys. Res. Lett. submittedGoogle Scholar
Mizutani, H., Yamamoto, T., & Fujimura, A. 1992, Adv. Space Res. 12 (8), 265CrossRefGoogle Scholar
Penz, T., Erkaev, N. V., Kulikov, Yu. N., Langmayr, D., Lammer, H., Micela, G., Cecchi-Pestellini, C., Biernat, H. K., Selsis, F., Barge, P., Deleuil, M., & Leger, A. 2008, Planet. & Space Sci. 56, 1260CrossRefGoogle Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ 622, 680CrossRefGoogle Scholar
Rivera, E. J., Lissauer, J. J., Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Brown, T. M., Laughlin, G., & Henry, G. W. 2005, ApJ 634, 625CrossRefGoogle Scholar
Sano, Y. 1993, J. Geomag. Geoelectr. 45, 65CrossRefGoogle Scholar
Santos, N. C., Bouchy, F., Mayor, M., Pepe, F., Queloz, D., Udry, S., Lovis, C., Bazot, M., Benz, W., Bertaux, J.-L., Curto, G. L., Delfosse, X., Mordasini, C., Naef, D., Sivan, J.-P., & Vauclair, S. 2004, A&A 426, L19Google Scholar
Scalo., J., Kaltenegger., L., Segura, A. G., Fridlund, M., Ribas, I., Kulikov, Yu. N., Grenfell, J. L., Rauer, H., Odert, P., Leitzinger, M., Selsis, F., Khodachenko, M. L., Eiroa, C., Kasting, J., & Lammer, H. 2007, Astrobiology 7, 85Google Scholar
Stevenson, D. J. 1983, Rep. Prog. Phys. 46, 555CrossRefGoogle Scholar
Tian, F., Kasting, J. F., Liu, H., & Roble, R. G. 2008, JGR 113, Issue E5, CiteID E05008 (DOI: 10.1029/2007JE002946)Google Scholar
van den Oord, G. H. J. & Doyle, J. G. 1997, A & A 319, 578Google Scholar
Vidal-Madjar, A., des Etangs, A. L., Désert, J.-M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. 2003, Nature 422, 143CrossRefGoogle Scholar
Voigt, G.-H. 1995, in: Volland, H. (ed.), Handbook of atmospheric electrodynamics, vol. II (CRC Press), p. 333Google Scholar
Walker, A. R. 1981, MNRAS 195, 1029CrossRefGoogle Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, ApJ 628, L143CrossRefGoogle Scholar
Yelle, R. V. 2004, Icarus 170, 167CrossRefGoogle Scholar