Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T18:30:52.726Z Has data issue: false hasContentIssue false

Magnetic pinch-type instability in stellar radiative zones

Published online by Cambridge University Press:  01 November 2008

Günther Rüdiger
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: gruediger@aip.de
Leonid L. Kitchatinov
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: gruediger@aip.de Institute for Solar-Terrestrial Physics, P.O. Box 291, Irkutsk, 664033, Russia
Marcus Gellert
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: gruediger@aip.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The solar tachocline is shown as hydrodynamically stable against nonaxisymmetric disturbances if it is true that no cos4θ term exists in its rotation law. We also show that the toroidal field of 200 Gauss amplitude which produces the tachocline in the magnetic theory of Rüdiger & Kitchatinov (1997) is stable against nonaxisymmetric MHD disturbances – but it becomes unstable for rotation periods slightly slower than 25 days. The instability of such weak fields lives from the high thermal diffusivity of stellar radiation zones compared with the magnetic diffusivity. The growth times, however, result as very long (of order of 105 rotation times). With estimations of the chemical mixing we find the maximal possible field amplitude to be ~500 Gauss in order to explain the observed lithium abundance of the Sun. Dynamos with such low field amplitudes should not be relevant for the solar activity cycle.

With nonlinear simulations of MHD Taylor-Couette flows it is shown that for the rotation-dominated magnetic instability the resulting eddy viscosity is only of the order of the molecular viscosity. The Schmidt number as the ratio of viscosity and chemical diffusion grows to values of ~20. For the majority of the stellar physics applications, the magnetic-dominated Tayler instability will be quenched by the stellar rotation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Arlt, R., Sule, A., & Rüdiger, G. 2005, A&A 441, 1171Google Scholar
Arlt, R., Sule, A., & Rüdiger, G. 2007, A&A 461, 295Google Scholar
Brott, I., Hunter, I., Anders, P., & Langer, N. 2008, in: O'Shea, B. W. et al. (eds.), FIRST STARS III, AIPC 990, p. 273Google Scholar
Cally, P. S. 2001, SP 199, 231Google Scholar
Cally, P. S. 2003, MNRAS 339, 957CrossRefGoogle Scholar
Carballido, A., Stone, J. M., & Pringle, J. E. 2005, MNRAS 358, 1055CrossRefGoogle Scholar
Charbonneau, P., Dikpati, M., & Gilman, P. A. 1999, ApJ 526, 523CrossRefGoogle Scholar
Garaud, P. 2007, in: Hughes, D. W. et al. (eds.), The Solar Tachocline, p. 147CrossRefGoogle Scholar
Gellert, M., Rüdiger, G., & Fournier, A. 2007, AN 328, 1162Google Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ 626, 350CrossRefGoogle Scholar
Johansen, A., Klahr, H., & Mee, A. J. 2006, MNRAS 370, 71CrossRefGoogle Scholar
Kitchatinov, L. L. & Rüdiger, G. 1999, A&A 344, 911Google Scholar
Kitchatinov, L. L. & Rüdiger, G. 2008, A&A 478, 1Google Scholar
Küker, M. & Stix, M. 2001, A&A 366, 668Google Scholar
Maeder, A. & Meynet, G. 2005, A&A 440, 1041Google Scholar
Pitts, E. & Tayler, R. J. 1985, MNRAS 216, 139CrossRefGoogle Scholar
Rüdiger, G. & Kitchatinov, L. L. 1997, AN 318, 273Google Scholar
Rüdiger, G. & Pipin, V. V. 2001, A&A 375, 149Google Scholar
Rüdiger, G. & Kitchatinov, L. L. 2007, New J. Phys. 9, 302Google Scholar
Rüdiger, G., Hollerbach, R., Schultz, M., & Elstner, D. 2007, MNRAS 377, 1481CrossRefGoogle Scholar
Tayler, R. J. 1973, MNRAS 165, 39CrossRefGoogle Scholar
Watson, M. 1981, GAFD 16, 285Google Scholar