Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T21:14:07.478Z Has data issue: false hasContentIssue false

The source of magnetic fields in (neutron-) stars

Published online by Cambridge University Press:  01 November 2008

Hendrik C. Spruit*
Affiliation:
Max-Planck-Institut für Astrophysik, Postfach 1317, D-85741 Garching, Germany email: henk@mpa-garching.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some arguments, none entirely conclusive, are reviewed about the origin of magnetic fields in neutron stars, with emphasis of processes during and following core collapse in supernovae. Possible origins of the magnetic fields of neutron stars include inheritance from the main sequence progenitor and dynamo action at some stage of evolution of progenitor. Inheritance is not sufficient to explain the fields of magnetars. Energetic considerations point to differential rotation in the final stages of core collapse process as the most likely source of field generation, at least for magnetars. A runaway phase of exponential growth is needed to achieve sufficient field amplification during relevant phase of core collapse; it can probably be provided by a some form of magnetorotational instability. Once formed in core collapse, the field is in danger of decaying again by magnetic instabilities. The evolution of a magnetic field in a newly formed neutron star is discussed, with emphasis on the existence of stable equilibrium configurations as end products of this evolution, and the role of magnetic helicity in their existence. A particularly puzzling problem is the large range of field strengths observed in neutron stars (as well as in A stars and white dwarfs). It implies that a single, deterministic process is insufficient to explain the origin of the magnetic fields in these stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Akiyama, S., Wheeler, J. C., Meier, D. L., & Lichtenstadt, I. 2003, ApJ 584, 954CrossRefGoogle Scholar
Ardeljan, N. V., Bisnovatyi-Kogan, G. S., & Moiseenko, S. G. 2005, MNRAS 359, 333CrossRefGoogle Scholar
Braithwaite, J. 2007, A&A 469, 275Google Scholar
Braithwaite, J. & Nordlund, Å. 2006, A&A 450, 1077Google Scholar
Braithwaite, J. & Spruit, H. C. 2006, A&A 453, 1097Google Scholar
Bucciantini, N., Quataert, E., Arons, J., Metzger, B. D., & Thompson, T. A. 2007, MNRAS 380, 1541CrossRefGoogle Scholar
Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. 2007, ApJ 664, 416CrossRefGoogle Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., & Reynolds, J. 2007, ApJ 666, L93CrossRefGoogle Scholar
Flowers, E. & Ruderman, M. A., 1977, ApJ 215, 302CrossRefGoogle Scholar
Gotthelf, E. V. & Halpern, J. P. 2007, ApJ 664, L35CrossRefGoogle Scholar
Halpern, J. P., Gotthelf, E. V., Camilo, F., & Seward, F. D. 2007, ApJ 665, 1304CrossRefGoogle Scholar
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ 440, 742CrossRefGoogle Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ 626, 350CrossRefGoogle Scholar
Ho, W. C. G., Blandford, R. D., & Hernquist, L. 2004, Bulletin of the American Astronomical Society, 36, 917Google Scholar
Kamchatnov, A. M., 1982, Zh. Eksp. Teor. Fiz. 82, 117.Google Scholar
Li, X.-D. & Jiang, Z.-B. 2007, ApSS 308, 525Google Scholar
Markey, P. & Tayler, R.J., 1974, MNRAS 168, 505.CrossRefGoogle Scholar
Mestel, L. 1984, AN 305, 301Google Scholar
Metzger, B. D., Thompson, T. A., & Quataert, E. 2007, ApJ 659, 561CrossRefGoogle Scholar
Moiseenko, S. G., Bisnovatyi-Kogan, G. S. & Ardeljan, N. V. 2005, Mem. Soc. Astr. It. 76, 575Google Scholar
Obergaulinger, M., Aloy, M. A., & Müller, E. 2006, A&A 450, 1107Google Scholar
Pitts, E. & Tayler, R. J., 1985, MNRAS 216, 139CrossRefGoogle Scholar
Prendergast, K. H. 1956, ApJ 123, 498CrossRefGoogle Scholar
Rankin, J. M. 2007, ApJ 664, 443CrossRefGoogle Scholar
Romani, R. W., 2005, Binary Radio Pulsars, ASP Conference Series, Vol. 328, p.337Google Scholar
Sawai, H., Kotake, K., & Yamada, S. 2007, ArXiv e-prints, 709, arXiv:0709.1795Google Scholar
Shibata, M., Liu, Y. T., Shapiro, S. L., & Stephens, B. C. 2006, Phys. Rev. D 74, 104026CrossRefGoogle Scholar
Spruit, H. C., 1999, A&A 349, 189Google Scholar
Spruit, H. C., 2002, A&A 381, 923Google Scholar
Spruit, H. C. & Phinney, E. S. 1998, Nature 393, 139CrossRefGoogle Scholar
Thompson, C. & Duncan, R. C. 1993, ApJ 408, 194CrossRefGoogle Scholar
Thompson, C. A. & Murray, N. 2001, ApJ 560, 339CrossRefGoogle Scholar
Uzdensky, D. A. & MacFadyen, A. I. 2007, ApJ 669, 546CrossRefGoogle Scholar
Zahn, J.-P. 1974, in Stellar Instability and Evolution, IAU Symposium 59, p185CrossRefGoogle Scholar
Zahn, J.-P. 1992, A&A 265, 115Google Scholar
Wang, Z., Kaplan, D. L., & Chakrabarty, D. 2007, ApJ 655, 261CrossRefGoogle Scholar
Wang, C., Lai, D., & Han, J. L. 2006, ApJ 639, 1007CrossRefGoogle Scholar
Woods, P. 2008, in 40 years of pulsars, Bassa, C.G. et al. (eds.), AIP conference proceedings Volume 983, p.227Google Scholar
Wright, G. A. E., 1973, MNRAS 162, 339CrossRefGoogle Scholar
Yu, Y. W. & Dai, Z. G. 2007, A&A 470, 119Google Scholar