Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T17:04:10.510Z Has data issue: false hasContentIssue false

Nature and nurture: overcoming constraints on immunity

Published online by Cambridge University Press:  06 April 2009

D. Wakelin
Affiliation:
Department of Zoology, University of Nottingham, Nottingham NG7 2RD

Summary

Parasitic infections in man and domestic animals exhibit two striking characteristics (a) their prevalence is high, but infections are unequally distributed among individuals within populations and (b) immunity is often slow to develop and appears, at best, only partially effective. Recent immunological and epidemiological studies suggest that effective immunity can develop, but that high prevalence within populations reflects the operation, not only of socio-economic and climatic factors, or husbandry practices, but also of powerful environmentally induced constraints upon the development of resistance. Immunogenetic studies suggest the operation of additional constraints which reflect individual genetic characteristics, and which influence the ability to develop and express effective immunity. A full understanding of all constraints is necessary before levels of population and individual resistance to infection can be increased; the need for such understanding has become more pressing with the prospect that anti-parasite vaccines may become available. Two aspects of environmentally induced constraints are considered, those arising from nutritional inadequacies and those resulting from exposure to infection in early life. Both are discussed primarily in terms of helminth parasites. Genetically determined constraints are discussed with reference to MHC-restricted recognition of malarial peptide vaccines and in terms of Class II molecule-directed control of T-cell function in Leishmania infections. Genetic influences are also considered from the standpoint of inflammatory cell function, in immunity against intestinal nematodes and in vaccine-induced immunity against Schistosoma. Finally, parasite-induced constraints, particularly those which down-regulate protective responses are discussed briefly.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albers, G. A., Gray, G. D., Piper, L. R., Barker, J. S. F., Le Jambre, L. F. & Barger, I. A. (1987). The genetics of resistance and resilience to Haemonchus contortus infection in young Merino sheep. International Journal for Parasitology 17, 1355–63.CrossRefGoogle ScholarPubMed
Alizadeh, H. & Wakelin, D. (1982). Genetic factors controlling the intestinal mast cell response in mice infected with Trichinella spiralis. Clinical and Experimental Immunology 49, 331–7.Google ScholarPubMed
Auriault, C., Ouassi, M. A., Torpier, G., Eisen, H. & Capron, A. (1981). Proteolytic cleavage of IgG bound to the Fc receptor of Schistosoma mansoni schistosomula. Parasite Immunology 3, 33–9.CrossRefGoogle Scholar
Ballantyne, A. J., Sharpe, M. J. & Lee, D. L. (1987). Changes in the adenylate energy charge of Nippostrongylus brasiliensis and Nematodirus battus during the development of immunity to these nematodes in their hosts. Parasitology 76, 211–20.CrossRefGoogle Scholar
Ballou, W. R., Hoffman, S. L., Sherwood, J. A., Hollingdale, M. R., Neva, F. A., Hockmeyer, W. T., Gordon, D. M., Schneider, I., Wirtz, R. A., Young, J. F., Wasserman, G. F., Reeve, P., Diggs, C. L. & Chulay, J. D. (1987). Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet 1, 1277–81.CrossRefGoogle ScholarPubMed
Behnke, J. M. (1987). Evasion of immunity by nematode parasites causing chronic infections. Advances in Parasitology 26, 171.CrossRefGoogle ScholarPubMed
Beisel, W. R. (1982). Synergism and antagonism of parasite diseases and malnutrition. Reviews of Infectious Diseases 4, 746–55.CrossRefGoogle ScholarPubMed
Bell, R. G., Adams, L. S. & Ogden, R. W. (1984). Trichinella spiralis: genetics of worm expulsion in inbred and F1 mice infected with different worm doses. Experimental Parasitology 58, 345–55.CrossRefGoogle ScholarPubMed
Blackwell, J. M. (1988). Protozoan infections. In Genetics of Resistance to Bacterial and Parasitic Infection (ed. Wakelin, D. & Blackwell, J. M.), pp. 103151. London: Taylor & Francis.Google Scholar
Blackwell, J. M., Freeman, J. C. & Bradley, D. J. (1980). Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature, London 283, 71–4.CrossRefGoogle ScholarPubMed
Blackwell, J. M. & Roberts, M. B. (1987). Immunomodulation of murine visceral leishmaniasis by administration of monoclonal anti-la antibodies: differential effects of anti-I-A vs anti-I-E antibodies. European Journal of Immunology 17, 1669–72.CrossRefGoogle Scholar
Bolin, T. D., Davis, A. E., Cummins, A. G., Duncombe, V. M. & Kelly, J. D. (1977). Effect of iron and protein deficiency on the expulsion of Nippostrongylus brasiliensis from the small intestine of the rat. Gut 18, 182–6.CrossRefGoogle ScholarPubMed
Bundy, D. A. p. & Golden, M. H. N. (1987). The impact of host nutrition on gastrointestinal helminth populations. Parasitology 95, 623–35.CrossRefGoogle ScholarPubMed
Butterworth, A. E. (1984). Cell-mediated damage to helminths. Advances in Parasitology 23, 144235.Google ScholarPubMed
Capron, A. & Dessaint, J.-P. (1982). Schistosomes as a potential source of immunopharmacological agents. Clinics in Immunology and Allergy 2, 613–19.CrossRefGoogle Scholar
Chandra, R. K. (1984). Parasitic infection, nutrition and immune response. Federation Proceedings 43, 251–5.Google ScholarPubMed
Chandra, R. K. & Newborne, P. M. (1977). Nutrition, Immunity and Infection-Mechanisms of Interaction. New York and London: Plenum Press.CrossRefGoogle Scholar
Correa-Oliveira, R., James, S. L., McCall, D. & Sher, A. (1986). Identification of a genetic locus, Rsm-1 controlling protective immunity against Schistosoma mansoni. Journal of Immunology 137, 2014–19.CrossRefGoogle ScholarPubMed
Correa-Oliveira, R. & Sher, A. (1985). Defective IgM responses to vaccination or infection with Schistosoma mansoni in xid mice. Infection and Immunity 50, 409–14.CrossRefGoogle ScholarPubMed
Cummins, A. G., Duncombe, V. M., Bolin, T. D., Davis, A. E. & Kelly, J. D. (1978). Suppression of rejection of Nippostrongylus brasiliensis in iron and protein deficient rats: effect of syngeneic lymphocyte transfer. Gut 19, 823–6.CrossRefGoogle ScholarPubMed
de Giudice, G., Cooper, J. A., Merino, J., Verdini, A. S., Pessi, A., Togna, A. R., Engers, H. D., Corradin, G. & Lambert, P.-H. (1986). The antibody response in mice to carrier-free synthetic polymers of Plasmodium falciparum circumsporozoite repetitive epitope is I-Ab restricted: possible implications for malaria vaccines. Journal of Immunology 137, 2952–5.CrossRefGoogle Scholar
Dineen, J. K., Gregg, P. & Lascelles, A. K. (1987). The response of lambs to vaccination at weaning with irradiated Trichostrongylus colubriformis larvae: segregation into ‘responders’ and ‘non-responders’. International Journal for Parasitology 8, 5963.CrossRefGoogle Scholar
Dineen, J. K. & Windon, R. G., (1980). The effect of sire selection on the response of lambs to vaccination with irradiated Trichostrongylus colubriformis larvae. International Journal for Parasitology 10, 189–96.CrossRefGoogle ScholarPubMed
Duncombe, V. M., Bolin, T. D., Davis, A. E. & Kelly, J. D. (1981). Delayed expulsion of the nematode Nippostrongylus brasiliensis from rats on a low protein diet: the role of a bone marrow-derived component. American Journal of Clinical Nutrition 34, 400–3.CrossRefGoogle ScholarPubMed
Else, K. & Wakelin, D. (1988). The effects of H-2 and non-H-2 genes on the expulsion of the nematode Trichuris muris from inbred and congenic mice. Parasitology 96, 543–50.CrossRefGoogle ScholarPubMed
Else, K., Wakelin, D. & Roach, T. I. A. (1988). Host predisposition to trichuriasis: the mouse-T. muris model. Parasitology 98, 275–82.CrossRefGoogle Scholar
Fenwick, P. F., Huber, C., Aggett, P. J., MacDonald, D. & Wakelin, D. (1985). The effect of zinc deficiency and supplementation on the response of rats to intestinal infection with Trichinella spiralis. Nutritional Research (Suppl. 1) 710–13.Google Scholar
Germain, R. N. (1986). The ins and outs of antigen processing and presentation. Nature, London 322, 687–9.CrossRefGoogle ScholarPubMed
Good, M. F., Berzofsky, J. A., Maloy, W. L., Hayashi, Y., Fujii, N., Hockmeyer, W. T. & Miller, L. H. (1986). Genetic control of the immune response in mice to a Plasmodium falciparum sporozoite vaccine. Journal of Experimental Medicine 164, 655–60.CrossRefGoogle ScholarPubMed
Good, M. F., Berzofsky, J. A. & Miller, J. H. (1988 a). The T cell response to the malaria circumsporozoite protein: an immunological approach to vaccine development. Annual Review of Immunology 6, 633–88.CrossRefGoogle Scholar
Good, M. F., Kumar, S. & Miller, L. H. (1988 b). The real difficulties for malaria sporozoite vaccine development: nonresponsiveness and antigenic variation. Immunology Today 9, 351–5.CrossRefGoogle ScholarPubMed
Good, M. F., Pombo, D., Quakyi, I. A., Riley, E. M., Houghten, R. A., Menon, A., Alling, D. W., Berzofsky, J. A. & Miller, L. H. (1988 c). Human T cell recognition of the circumsporozoite protein of Plasmodium falciparum. Immunodominant T cell domains map to the polymorphic regions of the molecule. Proceedings of the National Academy of Sciences, USA 85, 1199–206.CrossRefGoogle Scholar
Gorczynski, R. M. & Macrae, S. (1982). Analysis of subpopulations of glass-adherent mouse skin cells controlling resistance/susceptibility to infection with Leishmania tropica, and correlation with the development of independent proliferative signals to Lyt-l+2+ T lymphocytes. Cellular Immunology 67, 7489.CrossRefGoogle ScholarPubMed
Handlinger, J. H. & Rothwell, T. L. W. (1981). Studies on the responses of basophil and eosinophil leucocytes and mast cells to the nematode Trichostrongylus colubriformis: comparison of cell populations in parasite resistant and susceptible guinea-pigs. International Journal for Parasitology 11, 6770.CrossRefGoogle Scholar
Haque, A. & Capron, A. (1982). Transplacental transfer of rodent microfilariae induces antigen-specific tolerance in rats. Nature, London 299, 361–3.CrossRefGoogle ScholarPubMed
Hoffman, S. L., Cannon, L. T., Berzofsky, J. A., Marjarian, W. R., Young, J. F., Maloy, W. L. & Hockmeyer, W. T. (1987). Plasmodium falciparum: sporozoite boosting of immunity due to a T-cell epitope on a sporozoite vaccine. Experimental Parasitology 64, 6470.CrossRefGoogle ScholarPubMed
Hollingdale, M. R., Nardin, E. H., Tharavanij, S., Schwartz, A. L. & Nussenzweig, R. S. (1984). Inhibition of entry of Plasmodium falciparum and P. vivax sporozoites into cultured cells; an in vitro assay of protective antibodies. Journal of Immunology 132, 909–13.CrossRefGoogle Scholar
James, S. L., Correa-Oliviera, R. & Leonard, E. J. (1984). Defective vaccine-induced immunity to Schistosoma mansoni in P strain mice. Journal of Immunology 133, 1587–93.CrossRefGoogle ScholarPubMed
James, S. L., Skamene, E. & Meltzer, M. S. (1983). Macrophages as effector cells of protective immunity in murine schistosomiasis. V. Variation in macrophage schistosomulicidal and tumoricidal activities among mouse strains and correlation with resistance to reinfection. Journal of Immunology 131, 948–53.CrossRefGoogle Scholar
Jarrett, E. E. E., Jarrett, W. F. H. & Urquhart, G. M. (1968). Immunological unresponsiveness to helminth parasites. I. The pattern of Nippostrongylus brasiliensis infection in young rats. Experimental Parasitology 23, 151–60.CrossRefGoogle ScholarPubMed
Jarrett, E. E. E. & Urquhart, G. M. (1969). Immunological unresponsiveness of helminth parasites. III. Challenge of rats previously infected at an early age with Nippostrongylus brasiliensis. Experimental Parasitology 25, 245–57.CrossRefGoogle Scholar
Liew, F. Y. (1987). Regulation of cell-mediated immunity in cutaneous leishmaniasis. Immunology Letters 16, 321–8.CrossRefGoogle ScholarPubMed
Lloyd, S. & Soulsby, E. J. L. (1987). Immunobiology of gastrointestinal nematodes of ruminants. In Immune Responses ìn Parasitic Infections: Immunology, Immunopathology and Immunoprophylaxis (ed. Soulsby, E. J. L.), pp. 141. Boca Raton, Florida: CRC Press Inc.Google Scholar
Lopez, V. & Urquhart, G. M. (1967). The immune response of Merino sheep to Haemonchus contortus infection. In The Reaction of the Host to Parasitism (ed. Soulsby, E. J. L.), pp. 153159. Proceedings of the World Association for the Advancement of Veterinary Parasitology, 34th International Congress, 1966.Google Scholar
Marikowsky, M., Arnon, R. & Rishelson, Z. (1988). Proteases secreted by transforming schistosomula of Schistosoma mansoni promote resistance to killing by complement. Journal of Immunology 141, 273–8.CrossRefGoogle Scholar
Mazingue, C., Walker, C., Domzig, W., Capron, A., De weck, A. & Stadler, B. M. (1987). Effect of schistosome-derived inhibitory factor on the cell cycle of T lymphocytes. International Archives of Allergy and Applied Immunology 83, 1218.CrossRefGoogle ScholarPubMed
Mielke, M., Ehlers, S. & Hahn, H. (1988). The role of T cell subpopulations in cell-mediated immunity to facultative intracellular bacteria. Infection 16, 5123–7.CrossRefGoogle ScholarPubMed
Miller, H. R. p. (1984). Protective mucosal response against gastrointestinal nematodes in ruminants and laboratory animals. Veterinary Immunology and Immunopathology 6, 167259.CrossRefGoogle ScholarPubMed
Miller, L. H., Howard, R. J., Carter, R., Good, M. F., Nussenzweig, V. & Nussenzweig, R. S. (1986). Research towards malaria vaccines. Science 234, 1349–56.CrossRefGoogle Scholar
Mitchell, G. F. (1984). Host-protective immunity and its suppression in a parasitic disease: murine cutaneous leishmaniasis. Immunology Today 5, 224–6.CrossRefGoogle Scholar
Murray, H. W., Stern, J. J., Welte, K., Rubin, B. Y., Carriero, S. M. & Nathan, C. F. (1987). Experimental visceral leishmaniasis: production of interleukin 2 and interferon γ, tissue immune reaction and response to treatment with interleukin 2 and interferon γ. Journal of Immunology 138, 2290–7.CrossRefGoogle ScholarPubMed
Murrell, K. D., Clark, D. S., Dean, D. A. & Vannier, W. E. (1979). Influence of mouse strain on induction of resistance with irradiated Schistosoma mansoni cercariae. Journal of Parasitology 65, 829–34.CrossRefGoogle ScholarPubMed
Ottesen, E. A., Mendell, N. R., MacQueen, J. M., Weller, P. F., Amos, D. B. & Ward, F. E. (1981). Familial predisposition to filarial infection - not linked to HLA-A or -B locus specificities. Acta Tropica 38, 205–16.Google ScholarPubMed
Potocnjak, P., Yoshida, N., Nussenzweig, R. S. & Nussenzweig, V. (1980). Monovalent fragments (Fab) of monoclonal antibodies to a sporozoite surface antigen (Pb44) protect mice against malarial infection. Journal of Exerimental Medicine 151, 1504–13.Google ScholarPubMed
Reed, N. D., Dehlawi, M. S. & Wakelin, D. (1988). Medium conditioned by spleen cells of Nematospiroides dubius-infected mice does not support development of cultured mast cells. International Archives of Allergy and Applied Immunology 85, 113–15.CrossRefGoogle Scholar
Reed, N. D., Wakelin, D., Lammas, D. A. & Grencis, R. K. (1988). Genetic control of mast cell development in bone marrow cultures. Strain-dependent variation in cultures from inbred mice. Clinical and Experimental Immunology 73, 510–15.Google ScholarPubMed
Schofield, L., Villaquiran, J., Ferreira, A., Schellekens, H., Nussenzweig, R. S. & Nussenzweig, V. (1987). γ Interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature, London 330, 664–6.CrossRefGoogle ScholarPubMed
Schrater, A. F., Spielman, A. & Piessens, W. F. (1983). Predisposition to Brugia malayi microfilaraemia in progeny of infected gerbils. American Journal of Tropical Medicine and Hygiene 32, 1306–8.CrossRefGoogle Scholar
Sher, A., Hieny, S. & James, S. (1984). Mechanisms of protective immunity against S. mansoni infection in mice vaccinated with irradiated cercariae. VI. Influence of the major histocompatibility complex. Parasite Immunology 6, 319–28.CrossRefGoogle ScholarPubMed
Slater, A. F. G. & Keymer, A. E. (1988). The influence of protein deficiency on immunity to Heligmosomoides polygyrus (Nematoda) in mice. Parasite Immunology 10, 507–22.CrossRefGoogle ScholarPubMed
Stern, J. J., Oca, M. J., Rubin, B. Y., Anderson, S. L. & Murray, H. W. (1988). Role of L3T4+ and Lyt-2+ cells in experimental visceral leishmaniasis. Journal of Immunology 140, 3971–7.CrossRefGoogle ScholarPubMed
Storey, N., Kee, J., Behnke, J. M. & Wakelin, D. (1988). Prenatal sensitization in experimental filariasis: observations on Acanthocheilonema viteae infections in mice. Tropical Medicine and Parasitology 39, 299303.Google ScholarPubMed
Terry, R. J. (1984). Parasites as immunologists. Parasitology 88, 681–2.CrossRefGoogle Scholar
Urquhart, G. M. (1980). Application of immunity in the control of parasitic disease. Veterinary Parasitology 6, 217–39.CrossRefGoogle Scholar
Urquhart, G. M., Jarrett, W. F. H., Jennings, F. W., McIntyre, W. I. m. & Mulligan, W. (1966). Immunity to Haemonchus contortus infection: relationship between age and successful vaccination with irradiated larvae. American Journal of Veterinary Research 27, 1645–8.Google ScholarPubMed
Wagland, B. M., Steel, J. W., Windon, R. G. & Dineen, J. K. (1984). The response of lambs to vaccination and challenge with Trichostrongylus colubriformis: effect of plane of nutrition on, and the inter-relationship between, immunological responsiveness and resistance. International Journal for Parasitology 14, 3944.CrossRefGoogle ScholarPubMed
Wakelin, D. (1988). Helminth infections. In Genetics of Resistance to Bacterial and Parasitic Infection (ed. Wakelin, D. & Blackwell, J. M.), pp. 153224. London: Taylor & Francis.Google Scholar
Wakelin, D. & Denham, D. A. (1983). The immune response. In Trichinella and Trichinosis (ed. Campbell, W. C.), pp. 265308. New York: Plenum Press.CrossRefGoogle Scholar
Wakelin, D. & Donachie, A. M. (1983). Genetic control of eosinophilia. Mouse strain variation in response to antigens of parasitic origin. Clinical and Experimental Immunology 51, 239–46.Google Scholar
Wakelin, D., Mitchell, L. A., Donachie, A. M. & Grencis, R. K. (1986). Genetic control of immunity to Trichinella spiralis in mice. Response of rapid- and slow-responder strains to immunization with parasite antigens. Parasite Immunology 8, 159–70.CrossRefGoogle ScholarPubMed
Wassom, D. K., Krco, C J. & David, C. S. (1987). I-E expression and susceptibility to parasite infection. Immunology Today 8, 3943.CrossRefGoogle Scholar
Wassom, D. L., Dougherty, D. A., Krco, C. J. & David, C S. (1984). H-2-controlled, dose-dependent suppression of the response that expels adult Trichinella spiralis from the small intestine of mice. Immunology 53, 811–18.Google ScholarPubMed
Werdelin, O. (1986). Determinant protection. A hypothesis for the activity of immune response genes in the processing and presentation of antigens by macrophages. Scandinavian Journal of Immunology 24, 625–36.CrossRefGoogle ScholarPubMed
Williams, J. F. (1986). Prospects for prophylaxis of parasitism. In Proceedings of the Sixth International Congress of Parasitology (ed. Howell, M. J.), pp. 711719. Canberra: Australian Academy of Science.Google Scholar
Windon, R. G. & Dineen, J. K. (1981). The effect of selection of both sire and dam on the response of F1 generation lambs to vaccination with irradiated Trichostrongylus colubriformis larvae. International Journal for Parasitology 11, 1118.CrossRefGoogle ScholarPubMed
Zavala, F., Tam, J. P., Hollingdale, M. R., Cochrane, A. H., Quakyi, I., Nussenzweig, R. S. & Nussenzweig, V. (1985). Rationale for development of a synthetic vaccine against Plasmodium falciparum malaria. Science 228, 1436–40.CrossRefGoogle ScholarPubMed