Journal of Fluid Mechanics



Papers

Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection


ERIC BROWN a1 and GUENTER AHLERS a1
a1 Department of Physics and iQCD, University of California, Santa Barbara, CA 93106, USA

Article author query
brown e   [Google Scholar] 
ahlers g   [Google Scholar] 
 

Abstract

We present a broad range of measurements of the angular orientation $\theta_0(t)$ of the large-scale circulation (LSC) of turbulent Rayleigh-Bénard convection as a function of time. We used two cylindrical samples of different overall sizes, but each with its diameter nearly equal to its height. The fluid was water with a Prandtl number of 4.38. The time series $\theta_0(t)$ consisted of meanderings similar to a diffusive process, but in addition contained large and irregular spontaneous reorientation events through angles $\uDelta \theta$. We found that reorientations can occur by two distinct mechanisms. One consists of a rotation of the circulation plane without any major reduction of the circulation strength. The other involves a cessation of the circulation, followed by a restart in a randomly chosen new direction. Rotations occurred an order of magnitude more frequently than cessations. Rotations occurred with a monotonically decreasing probability distribution $p(\uDelta \theta)$, i.e. there was no dominant value of $\uDelta \theta$ and small $\uDelta \theta$ were more common than large ones. For cessations, $p(\uDelta\theta)$ was uniform, suggesting that information of $\theta_0(t)$ is lost during cessations. Both rotations and cessations have Poissonian statistics in time, and can occur at any $\theta_0$. The average azimuthal rotation rate $|\skew4\dot\theta|$ increased as the circulation strength of the LSC decreased. Tilting the sample relative to gravity significantly reduced the frequency of occurrence of both rotations and cessations.

(Received March 3 2006)
(Revised May 18 2006)



Metrics