Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T10:27:57.181Z Has data issue: false hasContentIssue false

Differentially expressed parasite genes involved in host recognition and invasion of the triactinomyxon stage of Myxobolus cerebralis (Myxozoa)

Published online by Cambridge University Press:  06 February 2009

E. ESZTERBAUER
Affiliation:
Clinic of Fish and Reptiles, Faculty of Veterinary Medicine, University of Munich, Kaulbachstraße 37, D-80539 Munich, Germany Veterinary Medical Research Institute, Hungarian Academy of Sciences, Hungaria krt. 21, H-1143 Budapest, Hungary
D. M. KALLERT
Affiliation:
Clinic of Fish and Reptiles, Faculty of Veterinary Medicine, University of Munich, Kaulbachstraße 37, D-80539 Munich, Germany
D. GRABNER
Affiliation:
Clinic of Fish and Reptiles, Faculty of Veterinary Medicine, University of Munich, Kaulbachstraße 37, D-80539 Munich, Germany
M. EL-MATBOULI*
Affiliation:
Clinic of Fish and Reptiles, Faculty of Veterinary Medicine, University of Munich, Kaulbachstraße 37, D-80539 Munich, Germany
*
*Corresponding author: Clinic of Fish and Reptiles, Faculty of Veterinary Medicine, University of Munich, Kaulbachstraße 37, D-80539 Munich, Germany. Tel: +49 89 2180 3273. Fax: +49 89 280 5175. E-mail address: el-matbouli@lmu.de

Summary

The host recognition and invasion process of Myxobolus cerebralis actinospores (triactinomyxon, TAM) was studied on a genetic level. A small-scale in vitro assay was developed to activate a large number of TAMs simultaneously, and to monitor the host invasion in the absence of live fish. The transcriptomes of non-activated and in vitro-activated TAMs were compared by suppressive subtractive hybridization (SSH) to identify parasite genes involved in the host invasion process. Differential screening and a subsequent BLAST search revealed 15 of 452 SSH-library clones expressed differently in activated TAMs. None of the 15 transcripts obtained has previously been identified from M. cerebralis. Quantitative real-time PCR was used to examine the relative expression profile of 8 selected transcripts upon TAM activation and after penetration of the host. Four of these were found to be up-regulated in activated TAMs, while expression was relatively low in non-activated TAMs and in infected fish tissue, indicating that they are relevant genes during host recognition or subsequent host invasion of M. cerebralis TAMs.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cannon, Q. and Wagner, E. (2003). Comparison of discharge mechanisms of cnidarian cnidae and myxozoan polar capsules. Reviews in Fisheries Science 11, 185219.CrossRefGoogle Scholar
Diatchenko, L., Lau, Y.-F. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D. and Siebert, P. D. (1996). Suppression subtractive hybridisation: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences, USA 93, 60256030.CrossRefGoogle ScholarPubMed
Dörfler, C. and El-Matbouli, M. (2007). Isolation of a subtilisin-like serine protease gene (MyxSubtSP) from spores of Myxobolus cerebralis, the causative agent of whirling disease. Diseases of Aquatic Organisms 73, 245251.CrossRefGoogle ScholarPubMed
El-Matbouli, M., Hoffmann, R. W. and Mandok, C. (1995). Light and electron microscopic observations on the route of the triactinomyxon – sporoplasm of Myxobolus cerebralis from epidermis into the rainbow trout (Oncorhynchus mykiss cartilage. Journal of Fish Biology 46, 919935.Google Scholar
El-Matbouli, M., Hoffmann, R. W., Schoel, H., McDowel, T. S. and Hedrick, R. P. (1999). Whirling disease: host specificity and interaction between the actinosporean stage of Myxobolus cerebralis and rainbow trout (Oncorhynchus mykiss). Diseases of Aquatic Organisms 35, 112.CrossRefGoogle ScholarPubMed
Eszterbauer, E. (2004). Genetic relationship among gill-infecting Myxobolus species (Myxosporea) of cyprinids: molecular evidence of importance of tissue specificity. Diseases of Aquatic Organisms 58, 3540.CrossRefGoogle ScholarPubMed
Eszterbauer, E., Marton, SZ., Rácz, O. Z., Letenyei, M. and Molnár, K. (2006). Morphological and genetic differences among actinosporean stages of fish-parasitic myxosporeans (Myxozoa): difficulties of species identification. Systematic Parasitology 65, 97114.CrossRefGoogle ScholarPubMed
Fiala, I. (2006). The phylogeny of Myxosporea (Myxozoa) based on small subunit ribosomal RNA gene analysis. International Journal for Parasitology 36, 15211534.CrossRefGoogle ScholarPubMed
Hallett, S. L., Atkinson, S. D., Erseus, C. and El-Matbouli, M. (2004). Molecular methods clarify morphometric variation in triactinomyxon spores (Myxozoa) released from different oligochaete hosts. Systematic Parasitology 57, 114.CrossRefGoogle ScholarPubMed
Holzer, A. S., Wootten, R. and Sommerville, C. (2007). The secondary structure of the unusually long 18S ribosomal RNA of the myxozoan Sphaerospora truttae and structural evolutionary trends in the Myxozoa. International Journal for Parasitology 37, 12811289.CrossRefGoogle ScholarPubMed
Jiménez-Guri, E., Philippe, H., Okamura, B. and Holland, P. W. (2007). Buddenbrockia is a cnidarian worm. Science 317, 116118.CrossRefGoogle ScholarPubMed
Kallert, D. M. and El-Matbouli, M. (2008). Differences in viability and reactivity of actinospores of three myxozoan species upon ageing. Folia Parasitologica 55, 105110.CrossRefGoogle ScholarPubMed
Kallert, D. M., El-Matbouli, M. and Haas, W. (2005). Polar filament discharge of Myxobolus cerebralis actinospores is triggered by combined non-specific mechanical and chemical cues. Parasitology 131, 609616.CrossRefGoogle ScholarPubMed
Kallert, D. M., Ponader, S., Eszterbauer, E., El-Matbouli, M. and Haas, W. (2007). Myxozoan transmission via actinospores: new insights in mechanisms and adaptations for host invasion. Parasitology 134, 17411750.CrossRefGoogle ScholarPubMed
Kelley, G. O., Adkison, M. A., Leutenegger, C. M. and Hedrick, R. P. (2003). Myxobolus cerebralis: identification of a cathepsin Z-like protease gene (MyxCP-1) expressed during parasite development in rainbow trout, Oncorhynchus mykiss. Experimental Parasitology 105, 201210.CrossRefGoogle ScholarPubMed
Kelley, G. O., Beauchamp, K. A. and Hedrick, R. P. (2004 a). Phylogenetic comparison of the myxosporea based on an actin cDNA isolated from Myxobolus cerebralis. Journal of Eukaryotic Microbiology 51, 660663.CrossRefGoogle Scholar
Kelley, G. O., Zagmutt-Vergara, F. J., Leutenegger, C. M., Adkison, M. A., Baxa, D. V. and Hedrick, R. P. (2004 b). Identification of a serine protease gene expressed by Myxobolus cerebralis during development in rainbow trout Oncorhynchus mykiss. Diseases of Aquatic Organisms 59, 235248.CrossRefGoogle ScholarPubMed
Kent, M. L., Andree, K. B., Bartholomew, J. L., El-Matbouli, M., Desser, S. S., Delvin, R. H., Feist, S. W., Hedrick, R. P., Hoffmann, R. W., Khattra, J., Hallett, S. L., Lester, R. J. G., Longshaw, M., Palenzuela, O., Siddall, M. E. and Xiao, C. (2001). Recent advances in our knowledge of the Myxozoa. Journal of Eukaryotic Microbiology 48, 395413.CrossRefGoogle ScholarPubMed
Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., Hao, L., He, S., Hurwitz, D. I., Jackson, J. D., Ke, Z., Krylov, D., Lanczycki, C. J., Liebert, C. A., Liu, C., Lu, F., Lu, S., Marchler, G. H., Mullokandov, M., Song, J. S., Thanki, N., Yamashita, R. A., Yin, J. J., Zhang, D. and Bryant, S. H. (2007). CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Research 35, 237240.CrossRefGoogle ScholarPubMed
Molnár, K., Marton, SZ., Eszterbauer, E. and Székely, CS. (2006). Comparative morphological and molecular studies on Myxobolus spp. infecting chub from the River Danube, Hungary, and description of Myxobolus muellericus sp. n. Diseases of Aquatic Organisms 73, 4961.CrossRefGoogle ScholarPubMed
Özer, A. and Wootten, R. (2002). Biological characteristics of some actinosporeans. Journal of Natural History 36, 21992209.CrossRefGoogle Scholar
Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, 20022007.CrossRefGoogle ScholarPubMed
Siddall, M. E., Martin, D. S., Bridge, D., Desser, S. S. and Cone, D. K. (1995). The demise of a phylum of protists: phylogeny of the Myxozoa and other parasitic cnidaria. Journal of Parasitology 81, 961967.CrossRefGoogle ScholarPubMed
Smothers, J. F., von Dohlen, C. D., Smith, L. H. Jr. and Spall, R. D. (1994). Molecular evidence that the myxozoan protists are metazoans. Science 265, 17191721.CrossRefGoogle ScholarPubMed
Suetsugu, S., Miki, H. and Takenawa, T. (2002). Spatial and temporal regulation of actin polymerization for cytoskeleton formation through Arp2/3 complex and WASP/WAVE proteins. Cell Motility and the Cytoskeleton 51, 113122.CrossRefGoogle ScholarPubMed
Staden, R. (1996). The Staden Sequence Analysis Package. Molecular Biotechnology 5, 233241.CrossRefGoogle ScholarPubMed
Uspenskaya, A. V. (1995). Alternation of actinosporean and myxosporean phases in the life cycle of Zschokkella nova (Myxozoa). Journal of Eukaryotic Microbiology 42, 665668.CrossRefGoogle ScholarPubMed
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3, Research 0034.CrossRefGoogle ScholarPubMed
Wagner, E. (2001 a). Triactinomyxon polar filament discharge: effects of mucus, magnetic fields, and MS-222. Ichtyogram 12 Issue 1, 67.Google Scholar
Wagner, E. (2001 b). Effect of calcium chelators, proline, and glutathione on polar filament extrusion of triactinomyxons of Myxobolus cerebralis. Ichtyogram 12 Issue 2, 58.Google Scholar
Whipps, C. M., El-Matbouli, M., Hedrick, R. P., Blazer, V. and Kent, M. L. (2004). Myxobolus cerebralis internal transcribed spacer 1 (ITS-1) sequences support recent spread of the parasite to North America and within Europe. Diseases of Aquatic Organisms 60, 105108.CrossRefGoogle Scholar
Xiao, C. and Desser, S. S. (2000). The longevity of actinosporean spores from oligochaetes of Lake Sasajewun, Algonquin Park, Ontario, and their reaction to fish mucus. Journal of Parasitology 86, 193195.CrossRefGoogle ScholarPubMed
Yokoyama, H., Ogawa, K. and Wakabayashi, H. (1993). Some biological characteristics of actinosporeans from the oligochaete Branchiura sowerbyi. Diseases of Aquatic Organisms 17, 223228.CrossRefGoogle Scholar
Yokoyama, H., Kim, J. H. and Urawa, S. (2006). Differences in host selection of actinospores of two myxosporeans, Myxobolus arcticus and Thelohanellus hovorkai. Journal of Parasitology 92, 725729.CrossRefGoogle ScholarPubMed
Zrzavy, J. and Hypsa, V. (2003). Myxozoa, Polypodium, and the origin of the Bilateria: The phylogenetic position of ‘‘Endocnidozoa’' in light of the rediscovery of Buddenbrockia. Cladistics 19, 164169.CrossRefGoogle Scholar