Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T17:10:25.262Z Has data issue: false hasContentIssue false

The Magellanic Group and the Seven Dwarfs

Published online by Cambridge University Press:  01 July 2008

Elena D'Onghia
Affiliation:
Institute for Theoretical Physik, University of Zurich, Winterthurerstraße 190, 8057 Zurich, Switzerland email: elena@physik.unizh.ch, lake@physik.unizh.ch
George Lake
Affiliation:
Institute for Theoretical Physik, University of Zurich, Winterthurerstraße 190, 8057 Zurich, Switzerland email: elena@physik.unizh.ch, lake@physik.unizh.ch
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Magellanic Clouds were the largest members of a group of dwarf galaxies that entered the Milky Way (MW) halo at late times. This group, dominated by the LMC, contained ~4% of the mass of the Milky Way prior to its accretion and tidal disruption, but ≈70% of the known dwarfs orbiting the MW. Our theory addresses many outstanding problems in galaxy formation associated with dwarf galaxies. First, it can explain the planar orbital configuration populated by some dSphs in the MW. Second, it provides a mechanism for lighting up a subset of dwarf galaxies to reproduce the cumulative circular velocity distribution of the satellites in the MW. Finally, our model predicts that most dwarfs will be found in association with other dwarfs. The recent discovery of Leo V (Belokurov et al. 2008), a dwarf spheroidal companion of Leo IV, and the nearby dwarf associations supports our hypothesis.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Belokurov, V., Walker, M. G., Evans, N. W., et al. 2008, ApJ, 686, L83CrossRefGoogle Scholar
Besla, G., Kallivayalil, N., Hernquist, L., Robertson, B., Cox, T. J., van der Marel, R. P., & Alcock, C. 2007, ApJ, 668, 949CrossRefGoogle Scholar
D'Onghia, E. & Lake, G. 2004, ApJ, 612, 628CrossRefGoogle Scholar
D'Onghia, E. & Lake, G. 2008, ApJ, 686, L61CrossRefGoogle Scholar
Fusi Pecci, F., Bellazzini, M., Cacciari, C., & Ferraro, F. R. 1995, AJ, 110, 1664CrossRefGoogle Scholar
Grebel, E. K., Gallagher, J. S. III, & Harbeck, D. 2003, AJ, 125, 1926CrossRefGoogle Scholar
Helmi, A., Irwin, M. J., Tolstoy, E., et al. 2006, ApJ, 651, L121CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J., & Geha, M. 2006, ApJ, 638, 772CrossRefGoogle Scholar
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006, ApJ, 652, 1213CrossRefGoogle Scholar
Kroupa, P., Theis, C., & Boily, C. M. 2005, A&A, 431, 517Google Scholar
Kunkel, W. E. & Demers, S. 1976, RGOB, 241Google Scholar
Li, Y. & Helmi, A. 2008, MNRAS, 385, 1365CrossRefGoogle Scholar
Libeskind, N. I., Frenk, C. S., Cole, S., Helly, J. C., Jenkins, A., Navarro, J. F., & Power, C. 2005, MNRAS, 363, 146CrossRefGoogle Scholar
Lin, D. N. C. & Lynden-Bell, D. 1982, MNRAS, 198, 707CrossRefGoogle Scholar
Lynden-Bell, D. 1976, MNRAS, 174, 695CrossRefGoogle Scholar
Lynden-Bell, D. 1982, Obs, 102, 7LGoogle Scholar
Metz, M., Kroupa, P., & Libeskind, N. I. 2008, ApJ, 680, 287CrossRefGoogle Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., & Tozzi, P. 1999, ApJ, 524, 19CrossRefGoogle Scholar
Piatek, S., Pryor, C., Bristow, P., Olszewski, E. W., Harris, H. C., Mateo, M., Minniti, D., & Tinney, C. G. 2005, AJ, 130, 95CrossRefGoogle Scholar
Simon, J. D. & Geha, M. 2007, ApJ, 670, 313CrossRefGoogle Scholar
Tully, R. B., Rizzi, L., Dolphin, A. E., et al. 2006, AJ, 132, 729CrossRefGoogle Scholar
Zentner, A. R., Kravtsov, A. V., Gnedin, O. Y., & Klypin, A. A. 2005, ApJ, 629, 219CrossRefGoogle Scholar