Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T11:34:26.978Z Has data issue: false hasContentIssue false

Dynamics of interplanetary CMEs and associated type II bursts

Published online by Cambridge University Press:  01 September 2008

Alejandro Lara
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México (UNAM), México email: alara@geofisisca.unam.mx
Andrea I. Borgazzi
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México (UNAM), México email: alara@geofisisca.unam.mx Divisão de Geofísica Espacial, INPE, Brasil email: andrea@geofisica.unam.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Coronal mass ejections (CMEs) are large scale structures of plasma (~1016g) and magnetic field expelled from the solar corona to the interplanetary medium. During their travel in the inner heliosphere, these “interplanetary CMEs” (ICMEs), suffer acceleration due to the interaction with the ambient solar wind. Based on hydrodynamic theory, we have developed an analytical model for the ICME transport which reproduce well the observed deceleration of fast ICMEs. In this work we present the results of the model and its application to the CME observed on May 13, 2005 and the associated interplanetary type II burst.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Borgazzi, A., Lara, A., Romero-Salazar, L., & Ventura, A. 2008, Geofísica Internacional, 47, 301Google Scholar
Canto, J., Gonzalez, R. F., Raga, A. C., de Gouveia Dal Pino, E. M., Lara, A., & Gonzalez-Esparza, A. 2005, Mon. Not R. Astrom. Soc., 357, 572Google Scholar
Cargill, P. J. & Chen, J. 1996, J. Geophys. Res., 101, A3, 4855Google Scholar
Cargill, P. J. 2004, Sol. Phys., 221, 135Google Scholar
Gonzalez-Esparza, A., Lara, A., Perez-Tijerina, E., Santillan, A., & Gopalswamy, N. 2003, J. Geophys. Res., 108, A1, 1039Google Scholar
Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M. L., & Russell, H. 2001, J. Geophys. Res., 18, 29.207Google Scholar
Gopalswamy, N., Lara, A., Lepping, R. P., Kaiser, M. L., Berdichevsky, D., & St.Cyr, O. C. 2000, Geophys. Res. Lett., 27, 145CrossRefGoogle Scholar
Gopalswamy, N., Lara, A., Manoharan, P., & Howard, R. 2005, Adv. Space Res., 36, 2289Google Scholar
Leblanc, Y., Dulk, G., & Bougeret, J. 1996, Solar Phys., 183, 165CrossRefGoogle Scholar
Odstrčil, D. & Pizzo, V. J. 1999a, J. Geophys. Res., 104, A1, 483CrossRefGoogle Scholar
Odstrčil, D. & Pizzo, V. J. 1999b, J. Geophys. Res., 104, A1, 493Google Scholar
Vandas, M., Fisher, S., Dryer, M., Smith, M., & Detman, T. 1995, J. Geophys. Res., 100, A7, 12258Google Scholar
Vršnak, B. 2001, J. Geophys. Res., 106, A11, 25249CrossRefGoogle Scholar
Vršnak, B. & Gopalswamy, N. 2002, J. Geophys. Res., 107, A2CrossRefGoogle Scholar
Vršnak, B., Ruždjak, D., Sudar, D., & Gopalswamy, N. 2004, A&A, 423, 717Google Scholar
Vršnak, B. & Žic, T. 2007, A&A, 472, 937Google Scholar