The Journal of Agricultural Science

Crops and Soils

Nitrogen in the excreta of dairy cattle: changes during short-term storage

D. C. Whiteheada1 p1 and N. Raistricka1 p2

a1 AFRC Institute of Grassland and Environmental Research, Hurley Research Station, Maidenhead, Berkshire SL6 SLR, UK


The concentration of N in samples of urine from dairy cattle fed on grass herbage, or grass or maize silage, sometimes with additional concentrate feeds, ranged from 6·0 to 13·8 mg N/l with 67–91% of the total N being present as urea. The concentration of N in 11 samples of dung was 0·32–0·52% on a fresh weight basis (2·74–3·82% N in dry weight). About 18% of the dung N was contained in particulate material of > 0·2 mm diameter, c. 72% in fine particulate plus colloidal material, and c. 10% was soluble in the presence of A12(SO4)3.

When urine was stored for 3 weeks, the urea component was hydrolysed with the formation of ammonium. The rate at which hydrolysis occurred was greatly influenced by temperature. Hydrolysis of urea was complete within 2 days at 35 °C, within 7 days at 20 °C and within 21 days at 10 °C, but was only c. 90% complete after 21 days at 5 °C. The rate of hydrolysis of urinary urea-N at 20 °C was increased slightly by inoculation with slurry, dung or soil, and was also increased slightly by the greater aeration resulting from a continuous stream of bubbled air. No nitrification was detected, even in urine that was aerated for 6 weeks, probably because the process was inhibited under the conditions of high pH (9–10) and high concentrations of ammoniacal N.

When dung was stored for 3 weeks at 5 or 10 °C, there was little change in the amount of organic matter or in the form of N. However, at higher temperatures, some mineralization occurred and the amount of organic matter declined by 8% at 20 °C and by 17% at 35 °C. About 10% of the organic N was converted to ammonium during 3 weeks at 20 °C, and c. 18% at 35 °C.

With a slurry prepared from approximately equal amounts of urine, dung and water, more of the dung material was mineralized than with the dung stored alone: c. 15% of the organic matter was lost during 3 weeks at 5 °C and c. 34% at 35 °C. Despite this loss of organic matter, there was net immobilization of soluble N during the 3-week period by the solid fractions of the slurry, at all four temperatures.

(Received September 25 1992)


p1 Department of Soil Science, University of Reading, London Road, Reading RG1 5AQ, UK.

p2 AFRC Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Dyfed SY23 3EB, UK.