Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T14:14:55.581Z Has data issue: false hasContentIssue false

Clonal distribution of resistance plasmid-carrying Salmonella typhimurium, mainly in the Middle East

Published online by Cambridge University Press:  15 May 2009

E. S. Anderson
Affiliation:
Enteric Reference Laboratory, Public Health Laboratory Service, Colindale Avenue, London, NW9 5HT
E. J. Threlfall
Affiliation:
Enteric Reference Laboratory, Public Health Laboratory Service, Colindale Avenue, London, NW9 5HT
Jacqueline M. Carr
Affiliation:
Enteric Reference Laboratory, Public Health Laboratory Service, Colindale Avenue, London, NW9 5HT
Moyra M. McConnell
Affiliation:
Enteric Reference Laboratory, Public Health Laboratory Service, Colindale Avenue, London, NW9 5HT
H. R. Smith
Affiliation:
Enteric Reference Laboratory, Public Health Laboratory Service, Colindale Avenue, London, NW9 5HT
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Strains of Salmonella typhimurium of predominantly Middle Eastern origin, but distributed from England to India, were found to carry at least three types of resistance plasmid. The most important was initially identified as an FI plasmid by compatibility tests, but differs from the F factor on the one hand and the FI factors R162 and CoIV on the other. The three groups of FI plasmids can be distinguished by their compatibility reactions with the MP10 plasmid of S. typhimurium (Smith, Humphreys, Grindley, Grindley & Anderson, 1973) and group H1 factors: the F factor is unilaterally incompatible with group H1 (Smith, Grindley, Humphreys & Anderson, 1973; Anderson, 1975b); the FI factors are compatible with MP10 and group H1 and FIme factors are incompatible with MP10 but compatible with H1. The majority of S. typhimurium cultures belonged to phage type 208; most of those that did not, belonged to types related to 208. Only a minority of their FIme plasmids were autotransferring. The remainder were mobilizable by F-like plasmids, and by group H1 and H2 factors, but not by the fi–I1 facter δ, or by plasmids of the I2, B, P, W, N and com 7 groups. The compatibility reactions of the autotransferring F1me plasmids were identical with those of the non-transferring members of the group, and both were large, single-copy plasmids.

The S. typhimurium strains of this series carried A or AK, and SSu resistance determinants: small, probably multicopy, non-transferring plasmids similar to those originally described in phage type 29 of S. typhimurium (Anderson & Lewis, 1965b).

These S. typhimurium cultures probably represent a clone of wide geographical distribution. The accurate epidemiological study of such clonal outbreaks requires, in addition to phage typing, precise identification of the plasmids harboured by the epidemic strains, and may have to be carried to the molecular level.

FIme plasmids were identified in other drug-resistant salmonellas, notably in a strain of S. wien which caused large outbreaks of mainly paediatric infection in Algeria, and also spread to Britain. An FIme plasmid was found in S. typhi phage type 44 from Algeria, in which the phage-restricting properties of the plasmid are responsible for the specificity of the type.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

References

Anderson, E. S. (1964). The phage typing of salmonellae other than S. typhi. In The World Problem of Salmonellosis (ed. Van Oye, E.), pp. 89110. The Hague: Dr W. Junk.CrossRefGoogle Scholar
Anderson, E. S. (1965). A rapid screening test for transfer factors in drug-sensitive Enterobacteriaceae. Nature, London 208, 1016–17.CrossRefGoogle ScholarPubMed
Anderson, E. S. (1968 a). Drug resistance in Salmonella typhimurium and its implications. British Medical Journal iii, 333–9.CrossRefGoogle Scholar
Anderson, E. S. (1968 b). The ecology of transferable drug resistance in the enterobacteria. Annual Review of Microbiology 22, 131–80.CrossRefGoogle ScholarPubMed
Anderson, E. S. (1969). Ecology and epidemiology of transferable drug resistance. In Ciba Foundation Symposium on Bacterial Episomes and Plasmids (ed. Wolstenholme, G. E. W. and O'Connor, M.), pp. 102115. London: J. A. Churchill Ltd.Google Scholar
Anderson, E. S. (1975 a). Viability of, and transfer of a plasmid from, E. coli K12 in the human intestine. Nature, London 255, 502–4.CrossRefGoogle Scholar
Anderson, E. S. (1975 b). The problems and implications of chloramphenicol resistance in the typhoid bacillus. Journal of Hygiene 74, 289–99.CrossRefGoogle ScholarPubMed
Anderson, E. S., Humphreys, G. O. & Willshaw, G. A. (1975). The molecular relatedness of R factors in Enterobacteria of human and animal origin. Journal of General Microbiology 91, 376–82.CrossRefGoogle ScholarPubMed
Anderson, E. S., Kelemen, M. V., Jones, C. M. & Pitton, J.-S. (1968). Study of the association of resistance to two drugs in a transferable determinant in Salmonella typhimurium. Genetical Research, Cambridge 11, 119–24.CrossRefGoogle Scholar
Anderson, E. S. & Lewis, M. J. (1965 a). Drug resistance and its transfer in Salmonella typhimurium. Nature, London 206, 579–83.CrossRefGoogle ScholarPubMed
Anderson, E. S. & Lewis, M. J. (1965 b). Characterisation of a transfer factor associated with drug resistance in Salmonella typhimurium. Nature, London 208, 843–9.CrossRefGoogle ScholarPubMed
Anderson, E. S., Pitton, J.-S. & Mayhew, J. N. (1968). Restriction of bacteriophage multiplication by resistance determinants in salmonellae. Nature, London 219, 640–1.CrossRefGoogle ScholarPubMed
Anderson, E. S. & Smith, H. R. (1972 a). Fertility inhibition in strains of Salmonella typhimurium. Molecular and General Genetics 118, 7984.Google ScholarPubMed
Anderson, E. S. & Smith, H. R. (1972 b). Chloramphenicol resistance in the typhoid bacillus. British Medical Journal iii, 329.CrossRefGoogle Scholar
Anderson, E. S. & Threlfall, E. J. (1970). Change of host range in a resistance factor. Genetical Research, Cambridge 16, 207–14.CrossRefGoogle Scholar
Anderson, E. S. & Threlfall, E. J. (1974). The characterization of plasmids in the enterobacteria. Journal of Hygiene 72, 471–87.CrossRefGoogle ScholarPubMed
Anderson, E. S., Threlfall, E. J., Carr, J. M. & Frost, J. A. (1974). Transferable drug resistance in salmonellae in South and Central America. Proceedings of the Society for General Microbiology 1, 66.Google Scholar
Anderson, E. S., Threlfall, E. J., Frost, J. A. & Carr, J. M. (1975). Transferable drug resistance in animal and human infection with new phage types of Salmonella typhimurium. Proceedings of the Society for General Microbiology 2, 64.Google Scholar
Anderson, E. S., Ward, L. R., de Saxe, E. M. & de Sa, J. D. H. (1977). Bacteriophage-typing designations of Salmonella typhimurium. Journal of Hygiene 78, 297300.CrossRefGoogle ScholarPubMed
Anderson, E. S. & Williams, R. E. O. (1956). Bacteriophage typing of enteric pathogens and staphyloccoci and its use in epidemiology. Journal of Clinical Pathology 9, 94127.CrossRefGoogle Scholar
Benveniste, R. & Davies, J. (1973). Mechanisms of antibiotic resistance in bacteria. Annual Review of Biochemistry 42, 471506.CrossRefGoogle ScholarPubMed
Callow, B. R. (1959). A new phage typing scheme for Salmonella typhimurium. Journal of Hygiene 57, 346–59.CrossRefGoogle Scholar
Chabbert, Y. A. & Gerbaud, G. R. (1974). Surveillance épidémiologique des plasmides responsables de la résistance au chloramphénicol de Salmonella typhi. Annales de Microbiologic, Paris 125A, 153–66.Google Scholar
Chabbert, Y. A., Scavizzi, M. R., Witchitz, J. L., Gerbaud, G. R. & Bouanchaud, D.H. (1972). Incompatibility groups and the classification of fi , resistance factors. Journal of Bacteriology 112, 666–75.CrossRefGoogle ScholarPubMed
Craigie, J. & Felix, A. (1947). Typing of typhoid bacilli with Vi bacteriophage. Lancet i, 823–7.CrossRefGoogle Scholar
Cuzin, F. (1965). Un bactériophage spécifique du type sexuel Fd'Escherichia coli K12. Comptes rendus de l' Académie des Sciences, Paris 260, 6482–5.Google Scholar
Dettori, R., Maccacaro, G. A. & Piccinin, G. L. (1961). Sex-specific bacteriophages of Escherichia coli K12. Journal of General Microbiology 9, 141–50.Google Scholar
Felix, A. & Callow, B. R. (1943). Typing of paratyphoid B bacilli by means of Vi bacteriophage. British Medical Journal ii, 127–30.CrossRefGoogle Scholar
Gratia, A. (1925). Sur un remarquable exemple d'antagonisme entre deux souches de colibacille. Comptes rendus des séances de la Sociéte de Biologic 93, 1040.Google Scholar
Grindley, J. N. & Anderson, E. S. (1971). I-like resistance factors with the fi + character. Genetical Research, Cambridge 17, 267–71.CrossRefGoogle ScholarPubMed
Grindley, N. D. F., Grindley, J. N. & Anderson, E. S. (1972). R factor compatibility groups. Molecular and General Genetics 119, 287–97.CrossRefGoogle ScholarPubMed
Hayes, W. (1952). Recombination in Bact. coli K12: unidirectional transfer of genetic material Nature, London 169, 118–19.CrossRefGoogle Scholar
Hedges, R. W. & Datta, N. (1972). R124, an fi + R factor of a new compatibility class. Journal of General Microbiology 71, 403–5.CrossRefGoogle ScholarPubMed
Humphareys, G. O., Grindley, N. D. F. & Anderson, E. S. (1972). DNA-protein complexes of Δ-mediated transfer systems. Biochimica et biophysica acta 287, 355–60.CrossRefGoogle Scholar
Jacob, F. & Adelberg, E. A. (1959). Transfert de caractères génétiques par incorporation au facteur sexuel d'Escherichia coli. Comptes rendus de l'Académie des Sciences, Paris 249, 189–91.Google ScholarPubMed
Le Minor, S. (1972). Apparition en France d'une épidémie à Salmonella wien. Médicine et Maladies Infectieuses 2, 441–8.CrossRefGoogle Scholar
Marvin, D. A. & Hoffman-Berling, H. A. (1963). Physical and chemical properties of two new small bacteriophages. Nature, London 197, 517–18.CrossRefGoogle Scholar
Mered, B., Benhassine, M., Papa, F., Kharti, B., Kheddari, M., Rahal, A. & Sari, L. (1970). Epidémiè à S. wien et S. typhimurium dens un service de pédiatric. Archives d'Institut Pasteur Algérie 48, 4152.Google Scholar
Meynell, G. G. & Lawn, A. M. (1968). Filamentous phages specific for the I sex factor. Nature, London 217, 1184–6.CrossRefGoogle ScholarPubMed
Smith, C., Anderson, E. S. & Clowes, R. C. (1970). Stable composite molecular forms of an R factor. Bacteriological Proceedings, p. 77.Google Scholar
Smith, H. R. (1975). Studies of non auto-transferring plasmids in Escherichia coli and salmonellae. Ph.D. thesis, University of London.Google Scholar
Smith, H. R., Grindley, J. N., Grindley, N. D. F. & Anderson, E. S. (1970). Derepression of F-lac in Salmonella typhimurium by a determinant for kanamycin resistance. Genetical Research, Cambridge 16, 349–53.CrossRefGoogle ScholarPubMed
Smith, H. R., Grindley, N. D. F., Humphreys, G. O. & Anderson, E. S. (1973). Interactions of Group H resistance factors with the F factor. Journal of Bacteriology 115, 623–8.CrossRefGoogle Scholar
Smite, H. R., Humphreys, G. O. & Anderson, E. S. (1974). Genetic and molecular characterisation of some non-transferring plasmids. Molecular and General Genetics, 129, 229–42.CrossRefGoogle Scholar
Smith, H. R., Humphreys, G. O., Grindley, N. D. F., Grindley, J. N. & Anderson, E. S. (1973). Molecular studies of an fi + plasmid from strains of Salmonella typhimurium. Molecular and General Genetics 126, 143–51.CrossRefGoogle ScholarPubMed
Threlfall, E. J., Carr, J. M. & Anderson, E. S. (1976). Compatibility relations of resistance plasmids in Salmonella typhimurium of Middle Eastern origin. Proceedings of the Society for General Microbiology 3, 88.Google Scholar