Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T13:32:14.527Z Has data issue: false hasContentIssue false

A study of feeding types and certain rumen functions in six species of South African wild ruminants

Published online by Cambridge University Press:  27 March 2009

D. Giesecke
Affiliation:
Institut für Tierphysiologie, Universität München, D-8000 München, Veterinärstrasse 13, Germany
N. O. Van Gylswyk
Affiliation:
National Chemical Research Laboratory, South African Council of Scientific and Industrial Research, P.O. Box 395, Pretoria, Republic of South Africa, 0001

Summary

In order to characterize the rumen digestive physiology of South African wild ruminants investigations were made on a total of 35 individuals of six species killed in various regions during the dry season.

In buffalo, blue wildebeest and gemsbok grasses constituted 85–100% and in impala, springbok and kuduless than 10% of the diet. In the case of the latter three species effects of the habitat and of predilection for certain plant materials were apparent.

Compared with the grazers, the species feeding mainly on plant material other than grass were characterized by a smaller physiological capacity of the rumen reticulum, higher counts of ciliate protozoa and ‘large bacteria’, higher levels of rumen ammonia and higher molar proportions of rumen propionate and valerate. Within these feeding types differences between species were indicated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, M. J. (1970). Nitrogen metabolism of rumen micro-organisms. In Physiology of Digestion and Metabolism in the Ruminant (ed. Phillipson, A. T.), pp. 456–73. Newcastle upon Tyne, England: Oriel Press Ltd.Google Scholar
Anonymous (1960). Kruger National Park: Annual Report of the Biologist 1958/59. Koedoe 3 1205.Google Scholar
Ansell, W. F. H. (1968). 8. Artiodaotyla (excluding the genus Gazella). In Preliminary Identification Manual for African Mammals (ed. Meester, J.). Smithsonian Institution, United States National Museum, Washington D.C. 20560.Google Scholar
Bigalke, R. C. (1966). The Springbok. Natural History, New York 75, 20–5.Google Scholar
Boyne, A. W., Eadie, J. M. & Raitt, K. (1957). The development and testing of a method of counting rumen ciliate protozoa. Journal of General Microbiology 17, 414–28.CrossRefGoogle ScholarPubMed
Brüggemann, J., Giesecke, D. & Walseb-Käbst, K. (1968). Methods for studying microbial digestion in ruminants post mortem with special reference to wild species. Journal of Wildlife Management 32, 198207.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1961). An improved non-selective culture medium for ruminal bacteria and its use in determining diurnal variation in numbers of bacteria in the rumen. Journal of Dairy Science 44, 1446–56.CrossRefGoogle Scholar
Burton, K. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of desoxyribonuoleic acid. Biochemical Journal 62, 315–23.CrossRefGoogle ScholarPubMed
Darling, F. F. (1960). Wildlife in an African Territory. London: Oxford University Press.Google Scholar
De Graaff, G., Schulz, K. C. A. & Van Der Walt, P. T. (1973). Notes on rumen contents of Cape buffalo (Syncerus coffer) in the Addo Elephant National Park. Koedoe 16, 4558.CrossRefGoogle Scholar
Demeyer, D. & Giesecke, D. (1973). Abbau der Kohlenhydrate und Biochemie der Gärung im Pansen. In Biologie und Biochemie der mikrobiellen Verdauung (ed. Giesecke, D. and Henderickx, H. K.), pp. 135–67. München: BLV-Verlag.Google Scholar
Giesecke, D. (1970). Comparative microbiology of the alimentary tract. In Physiology of Digestion and Metabolism in the Ruminant (ed. Phillipson, A. T.), pp. 306–18. Newcastle upon Tyne, England: Oriel Press Ltd.Google Scholar
Giesecke, D. (1973). Biologie und Biochemie der Bakterien im Pansen. In Biologie und Biochemie der mikrobiellen Verdauung (ed. Giesecke, D. and Henderickx, H. K.), pp. 957. München: BLV-Verlag.Google Scholar
Günzel, R. (1973). Untersuchungen über die Beziehungen zwischen freien Fettsäuren und Glucose im Blut von Schafen und die Beeinflussung durch glucogene 3-Kohlenstoffverbindungen. Inaug. Dissertation (Vet. Med.), Universität München.Google Scholar
Hobson, P. N. (1970). Some field experiments on the rumen functions of red deer, hill sheep and reindeer. Deer 2, 450–3.Google Scholar
Hofmann, R. R. (1969). Zur Topographic und Morphologie des Wiederkäuermagens in Hinblick auf seine Funktion. Berlin and Hamburg: Verlag P. Parey.Google Scholar
Hofmann, R. R. & Stewart, D. R. M. (1972). Grazer or Browser. A classification based on the stomachstructure and feeding habits of East African Ruminants. Mammalia 36, 226–40.CrossRefGoogle Scholar
Hungate, R. E. (1950). The anaerobic mesophylic cellulolytic bacteria. Bacteriological Reviews 14, 149.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York and London: Academic Press.Google Scholar
Hungate, R. E., Phillips, G. D., McGregor, A., Hungate, D. P. & Buechner, H. K. (1959). Microbial fermentation in certain mammals. Science, New York 130, 1192–4.CrossRefGoogle ScholarPubMed
Leistner, O. A. (1959). Notes on the vegetation of the Kalahari Gemsbok National Park with special reference to its influence on the distribution of antelopes. Koedoe 2, 128–51.CrossRefGoogle Scholar
Maloiy, G. O. M. (1965). African game animals as a source of protein. Nutrition Abstracts and Reviews 35, 903–8.Google ScholarPubMed
Pienaar, U. De V. (1969). Observations on developmental biology, growth and some aspects of the population ecology of African buffalo (Syncerus caffer Sparman) in the Kruger National Park. Koedoe 12, 2952.CrossRefGoogle Scholar
Prins, R. A. & Geelen, M. J. H. (1971). Rumen characteristics of red deer, fallow deer and roe deer. Journal of Wildlife Management 35, 673–80.CrossRefGoogle Scholar
Sachs, L. (1972). Statistische Auswertungsmethoden, 3rd edn. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Skinner, J. D., Chevallerie, M. & Van Zyl, J. H. M. (1971). An appraisal of the springbok for diversifying animal production in Africa. Animal Breeding Abstracts 39, 215–24.Google Scholar
Talbot, L. M., Payne, W. J. A., Ledger, H. P., Verdcourt, L. D. & Talbot, M. H. (1965). The meat production potential of wild animals in Africa. Technical Communications of the Commonwealth Agricultural Bureau No. 16.Google Scholar
Toerien, D. F. & Siebert, M. L. (1967). Modification of the Astell roll tube apparatus for the enumeration and cultivation of anaerobic bacteria. Laboratory Practice 16, 320, 322.Google ScholarPubMed
Van Der Schijff, H. P. (1959). Weidingsmöontlikhede en weidingsprobleme in die Nasionale Krugerwildtuin. Koedoe 2, 96127.CrossRefGoogle Scholar
Van Gylswyk, N. O. (1970). The effect of supplementing a low-protein hay on the cellulolytic bacteria in the rumen of sheep and on the digestibility of cellulose and hemicellulose. Journal of Agricultural Science, Cambridge 74, 169–80.CrossRefGoogle Scholar
Van Gylswyk, N. O. & Giesecke, D. (1973). A summary of preliminary findings in a rumen microbiological investigation on wild ruminants. Koedoe 16, 191–4.CrossRefGoogle Scholar
Warner, A. C. I. (1962). Some factors influencing the rumen microbial population. Journal of General Microbiology 28, 129–46.CrossRefGoogle ScholarPubMed
Wise, E., Murphy, M. & D'Addieco, A. A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122, 3543.Google Scholar