Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T20:24:35.155Z Has data issue: false hasContentIssue false

Thermal sensitivity of Clostridium botulinum type C toxin

Published online by Cambridge University Press:  15 May 2009

Z. Hubálek
Affiliation:
Czechoslovak Academy of Sciences, Institute of Systematical and ecological
J. Halouzka
Affiliation:
Czechoslovak Academy of Sciences, Institute of Systematical and ecological
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A sterile suspension containing 950 mouse LD50 per ml of type C botulinum toxin was exposed for various periods to different temperatures. The time required for the 99% (hundred-fold) reduction of toxicity was more than 5 years at -70°C or -20°C, 6 montha at +5 °C, 3 weeks at +20 °C, 2 weeks at +28 °C, 2 days at +37 °C, 9h at +42°C, less than 30 min at 56 °C, less than 20 min at +60 °C, and below 5 min at +80 °C. The results suggest that Clostridium botulinum type C toxin, if produced in an ecosystem of the mild climatic zone, might persist there over the winter season and cause the intoxication of vertebrates next carly spring in the absence of further microbial toxigenesis.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

References

Bengtson, I. A. (1922). Preliminary note on a toxin-producing anaerobe isolated from the larvae of Lucilia caesar. Public Health reports 37, 164170.CrossRefGoogle Scholar
Boroff, D. A. & Dasgupta, B. R. (1971). Botulinum toxin. In Microbial Toxins, vol. II A (ed. Kadis, S.Montie, T. C.Ajl, S. J.), pp. 168. New York, London:Academic Press.Google Scholar
Duncan, R. M. & Jensen, W. I. (1976). A relationship between avian carcasses and living invertebrates in the epizootiology of avian botulism. Journal of Wildlife Diseases 12, 116126.CrossRefGoogle ScholarPubMed
Graham, J. M., Smith, G. R., Borland, E. D. & Macdonald, J. W. (1978). Avian botulism in winter and spring and the stability of Clostridium botulinum type C toxin. The Veterinary Record 102, 4041.CrossRefGoogle Scholar
Grüll, A., Baure, G. & Sagmeister, H. (1987). Ökologische Untersuchunge am Was servogelbotulismus im Seewinkel (Neusiedler See-Gebiet). Wissenschaftliche Aebeiten aus dem Burgenaland, Sonderband 77, 301351.Google Scholar
Haagsma, J. (1979). Clostridial diseases in Europ. In CRC Handbook on Zoonoses, sect. A, Vol. 1 (ed. Steele, I. J. H.), pp. 225294. Boca Raton, Florida: CRC Press.Google Scholar
Haagsma, J., Over, H. J., Smit, T. & Hoekstra, J. (1972). Botulism in waterfowl in the Netherlands in 1970. Netherlands Journal of Veterinary Science 5, 1133.Google Scholar
Hubálek, Z., Hudec, K. & Pellantová, J. (1982). Botulism in wild waterfowl in southern Moravia (Czechoslovaka). Folia parasitologica 29, 331332.Google Scholar
Hubálek, Z., Hudec, K., Neubauer, M. & Pellantová, J. (1984). Botulism in waterbirds on the Starý pond near Pohoreliceř (Břeclav district). (In Czech, with a summary in English). Veterinárni Medicina (Praha) 29, 747752.Google Scholar
PrÉvot, A.R. & Brygoo, E.R. (1953). Nouvelles recherhes sur le botulisme et ses cinq types toxiniques. Annales de L' Institul Pasteur (Paris) 85, 544575.Google Scholar
Rachač, V. (1986). Botulism of waterbirds in early spring and spring periods. (In Czech). Veterinářstui (Praha) 36, 135137.Google Scholar
Roberts, T. A., & Gibson, A. M. (1979). The relevance of Clostridium botulinum type Cin public health and food processing. Joural of Food Technology 14, 211226.CrossRefGoogle Scholar
Roberts, T. A., Keymer, I. F., Borland, E. D. & Smith, G. R. (1972). Botulism in birds and mammals in Great Britain. The Veterinary Record 91, 1112.CrossRefGoogle ScholarPubMed
Scott, W. J. & Stewart, D. F. (1950). The thermal destruction of Closlridium bolalinum toxin in canned vegetables. Australian Journal of Applied Science 1, 188199.Google Scholar
Segner, W. P., Schmidt, C. F. & Boltz, J. K. (1971). Minimal growth temperature, sodium chloride tolerance, pH sensitivity and toxin production of mamarine and terrestrial strains of Closlridium botulinum type C. Applied Microbiology 22, 10251029CrossRefGoogle ScholarPubMed
Shayegani, M., Stone, W. B. & Hannett, G. E. (1984). An outbreak of botulism in waterfowl and fly larvae in New York State. Journal of Wildlife Diseases 20, 8689.CrossRefGoogle ScholarPubMed
Smart, J.L., Jones, T. O., Clegg, F. G. & Mcmurtry, M. J. (1987). Poulty waste associated type C botulism in cattle. Epidemiology and Infection 98, 7379.CrossRefGoogle Scholar
Smart, J. L. & Rush, P. A. J. (1987). In-vitro heat deaturation of Clostridium botulinum toxins A, B and C. Internationl Joural of food Science and Technology 22, 293298.CrossRefGoogle Scholar
Smith, G. R. (1976). Botulism in waterfoel. The Wildfowl 27, 129139.Google Scholar
Smith, G. R. & Turner, a. (1987). Factors affecting the toxicity of ritting carasses containing Clostridium botulinum type C. Epidemiology and Infection 98, 345351.CrossRefGoogle Scholar
Smith, L. D. (1977). Botulism. The Organism, its Toxins, the Disease. Sprigfield, Illinois: Thomas, C. C..Google Scholar
Wobeser, G., Rainnie, D. J., Smith-Windsor, T. B. & Bogdan, G. (1983). A vian botulisn during late autumn and early spring in saskatchewan. Journal of Wildlife Diseass 19, 9094.CrossRefGoogle Scholar
Yamakawa, K., Nishida, S., Nakamura, S. & Nakamura, S. (1983). C2 toxicity in extract of Clostridiun botulinum type C spores. Infection and I mmunity 41, 858860.CrossRefGoogle Scholar