Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T00:31:17.320Z Has data issue: false hasContentIssue false

Chemical disinfection of non-porous inanimate surfaces experimentally contaminated with four human pathogenic viruses

Published online by Cambridge University Press:  15 May 2009

S. A. Sattar
Affiliation:
Department of Microbiology and Immunology, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
V. S. Springthorpe
Affiliation:
Department of Microbiology and Immunology, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
Y. Karim
Affiliation:
Department of Microbiology and Immunology, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
P. Loro
Affiliation:
Department of Microbiology and Immunology, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The chemical disinfection of virus-contaminated non-porous inanimate surfaces was investigated using coxsackievirus B3, adenovirus type 5, parainfluenzavirus type 3 and coronavirus 229E as representatives of important nosocomial viral pathogens. A 10 µl amount of the test virus, suspended in either faeces or mucin, was placed onto each stainless steel disk (about 1 cm in diameter) and the inoculum allowed to dry for 1 h under ambient conditions. Sixteen disinfectant formulations were selected for this study based on the findings of an earlier investigation with a human rotavirus.After 1 min exposure to 20 µl of the disinfectant, the virus from the disks was immediately eluted into tryptose phosphate broth and plaque assayed. Using an efficacy criterion of a 3 log10 or greater reduction in virus infectivity titre and irrespective of the virus suspending medium, only the following five disinfectants proved to be effective against all the four viruses tested: (1) 2% glutaraldehyde normally used as an instrument soak. (2) a strongly alkaline mixture of 0·5% sodium o-benzyl-p-chlorophenate and 0·6% sodium lauryl sulphate, generally used as a domestic disinfectant cleaner for hard surfaces, (3) a 0·04% solution of a quaternary ammonium compound containing 7% hydrochloric acid, which is the basis of many toilet bowl cleaners. (4) chloraminc T at a minimum free chlorine level of 3000 p.p.m. and (5) sodium hypochlorite at a minimum free chlorine concentration of 5000 p.p.m. Of those chemicals suitable for use as topical antiseptics, 70% ethanol alone or products containing at least 70% ethanol were ineffective only against coxsackievirus B3. These results emphasize the care needed in selecting chemical disinfectants for routine use in infection control.

Type
Special Article
Copyright
Copyright © Cambridge University Press 1989

References

REFERENCES

Ansari, S. A., Sattar, S. A., Springthorpe, V. S., Wells, G. A. & Tostowaryk, W. (1988 a). Rotavirus survival on human hands and transfer of infectious virus to animate and non-porous inanimate surfaces. Journal of Clinical Microbiology 26, 15131518.CrossRefGoogle Scholar
Ansari, S. A., Sattar, S. A., Springthorpe, V. S., Wells, G. A. & Tostowaryk, W. (1988 b). Antisepsis of rotavirus-contaminated hands. Paper presented at the Conjoint Meeting on Infectious Diseases. 11 1988. Calgary, Alberta. Canada.Google Scholar
Bailey, A. & Longson, M. (1972). Virucidal activity of chlorhexidine on strains of Herpesvirus hominis, poliovirus and adenovirus. Journal of Clinical Pathology 25, 7678.CrossRefGoogle ScholarPubMed
Blackwell, J. H. (1978). Comparative resistance of San Miguel sea-lion virus and vesicular exanthema of swine virus to chemical disinfectants. Research in Veterinary Science 25, 2528.CrossRefGoogle ScholarPubMed
Brown, T. T. (1981). Laboratory evaluation of selected disinfectants as virucidal agents against porcine parvovirus, pseudorabies virus and transmissible gastroenteritis virus. American Journal of Veterinary Research 42, 10331036.Google ScholarPubMed
Cheremisinoff, N. P., Cheremisinoff, P. N. & Trattner, R. B. (1981). Disinfection with interhalogens and halogen mixtures. In Chemical and Non-chemical Disinfection. Ch 2. Ann Arbor. MI. USA: Ann Arbor Science.Google Scholar
De Fabritis, A. M., Riggio, R. R., David, D. S., Senterfit, L. B., Cheigh, J. S. & Stenzel, K. H. (1979). Parainfluenza type 3 in a transplant unit. Journal of the American Medical Association 241,384385.CrossRefGoogle Scholar
Derbyshire, J. B. & Arkell, S. (1971). The activity of some chemical disinfectants against Talfan virus and porcine adenovirus type 2. British Veterinary Journal 127, 137141.CrossRefGoogle ScholarPubMed
Diem, K. & Lentner, C. (1970).Documenta Geigy Scientific Tables. Seventh edition. Basle, Switzerland: J. R. Geigy S.A.Google Scholar
Drulak, M., Wallbank, A. M., & Lebtag, I., (1978). The relative effectiveness of commonly used disinfectants in inactivation of echovirus 11. Journal of Hygiene 81, 7787.CrossRefGoogle ScholarPubMed
Drulak, M., Wallabank, A. M., Lebtag, I., Werboski, L. & Poffenroth, L. (1978). The relative effectiveness of commonly used disinfectants in inactivation of coxsackievirus B5. Journal of Hygiene 81, 389397.CrossRefGoogle ScholarPubMed
England, B. L. (1982). Detection of viruses on fomites. In Methods in Environmental Virology (ed. Gerba, C. P. and Goyal, S. M.). pp. 179220. New York. N. Y.. USA: Marcel Dekker Inc.Google Scholar
Ford-Jones, L. (1987). The special problems of nosocomial infection in the pediatric patient. In Prevention and Control of Nosocomial Infections (ed. Wenzel, R. P.). pp. 494540. Baltimore. MD: Williams and Wilkins.Google Scholar
Gardner, J. F. & Gray, K. G. (1983). Chlorhexidine. In Disinfection. Sterilization and Preservation (ed. Block, S. S.). Philadelphia, PA. USA: Lea & Febiger.Google Scholar
Graham, D. Y., Dufour, G. R. & Estes, M. K. (1987). Minimal infective dose of rotavirus. Archives of Virology 92, 261271.CrossRefGoogle ScholarPubMed
Hall, C. B., Douglas, R. G. &.Geiman, J. M. (1980). Possible transmission by fomites of respiratory syncytial virus. Journal of Infectious Diseases 141, 98102.CrossRefGoogle ScholarPubMed
Hutto, C., Little, A., Ricks, R., Lee, J. D. & Pass, R. F. (1986). Isolation of cytomegalovirus from toys and hands in a day-care center. Journal of Infectious Diseases 154, 527530.CrossRefGoogle Scholar
Jordan, F. T. W. & Nassar, T. J. (1973). The survival of infectious bronchitis (IB) virus in an iodophor disinfectant and the influence of certain components. Journal of Applied Bacteriology 36, 335341.CrossRefGoogle Scholar
Kaye, H. S., Marsh, H. B. & Dowdle, W. R. (1971). Seroepidemiologic survey of coronavirus (strain OC43) related infections in a children's population. American Journal of Epidemiology 94, 4349.CrossRefGoogle Scholar
Kirchhoff, H. (1969). Problems of virus disinfection shown with the example of Newcastle disease virus. Deutsche Tierarztlicher Wocherschrift 76, 7174.Google Scholar
Klein, J. (1986). Infectious diseases and daycare. Reviews of Infections Diseases 8, 521526.CrossRefGoogle Scholar
Klein, M. & Deforest, A. (1963). The inactivation of viruses by germicides. Proceedings. 49th mid-year Meeting Chemical Specialties Manufacturers’ Association. 20–22 05 1963. Chicago, Ill., USA.Google Scholar
Klein, M. & Deforest, A. (1983). Principles of virus inactivation. In Disinfection. Sterilization and Preservation (ed. Block, S. S.). Philadelphia, PA. USA: Lea & Febiger.Google Scholar
Lloyd-Evans, N., Springthorpe, V. S. & Sattar, S. A. (1986). Chemical disinfection of human-rotavirus-contaminated inanimate surfaces. Journal of Hygiene 97, 163173.CrossRefGoogle ScholarPubMed
Mahnel, H. (1974). Virucidal effect of disinfectants in the suspension test. Berlin & München Tierartzlicher Wochenschrift 87, 385388.Google ScholarPubMed
Mahnel, H. (1979). Variations in resistance of viruses from different groups to chemico-physical decontamination methods. Infection 7, 240246.CrossRefGoogle ScholarPubMed
Maynard, J. E. (1976). Modes of hepatitis B transmission. In Hepatitis Viruses (ed. Oda, T.). pp. 125137. Baltimore. MD. USA: University Park Press.Google Scholar
Meissner, H. C., Murray, S. A., Kiernan, M. A., Snydman, D. R. & McIntosh, K. (1984). A simultaneous outbreak of respiratory syncytial virus and parainfluenza virus type 3 in a newborn nursery. Journal of Pediatrics 104, 680684.CrossRefGoogle Scholar
Mufson, M. A., Mocega, H. E. & Krause, H. E. (1973) Acquisition of parainfluenza 3 virus by hospitalised children. I. Frequency, rates and temporal data. Journal of Infectious Diseases 128, 141147.CrossRefGoogle ScholarPubMed
Nakao, J., Hers, R. G., Bachman, P. A. & Mahnel, H. (1978). Inactivation of transmissible gastroenteritis (TGE) virus of pigs. Berl. Munch. Tierartz. Wschr. 91, 353357.Google Scholar
Pancic, F., Carpenter, D. C. & Came, D. E. (1980). Role of infectious secretions in the transmission of rhinovirus. Journal of Clinical Microbiology 12, 567571CrossRefGoogle ScholarPubMed
Pattison, T. C., Boyer, K. M., Maynard, J. E. & Kelly, P. C. (1974). Epidemic hepatitis in a clinical laboratory. Possible association with computer card handling. Journal of the American Medical Association 230, 854857.CrossRefGoogle Scholar
Payne, S. B., Grilli, E. A. & Smith, A. J. (1984). Investigation of an outbreak of adenovirus type 3 infection in a boys' boarding school. Journal of Hygiene 93, 277293.CrossRefGoogle Scholar
Poli, G., Ponti, W., Micheletti, R. & Cantoni, C. (1978). Virucidal activity of some quaternary ammonium compounds. Drug Research 28, 16721675.Google ScholarPubMed
Sattar, S. A. & Springthorpe, V. S. (1987). Spread of viral infections by contaminated surfaces. Proceedings of the Annual Conference of the Canadian Association for Biological safety.May. 1987,Ottawa, Ontario, Canada. In press.Google Scholar
Sattar, S. A. & Springthorpe, V. S. (1980). Test protocols for virucides: need for improvements. Proceedings, 4th Conf. on Progress in Chemical Disinfection.11–13 April 1988.Binghamton, New York, USA. In press.Google Scholar
Sattar, S. A. & Westwood, J. C. N. (1978). Viral pollution of surface waters due to chlorinated primary effluents. Applied and Environmental Microbiology 36 427431.CrossRefGoogle ScholarPubMed
Sattar, S. A., Ijaz, M. K., Johnson-Lussenburg, C. M. & Springthorpe, V. S. (1984). Effects of relative humidity on the airborne survival of rotavirus SA-11. Applied and Environmental Microbiology 47, 879881.CrossRefGoogle Scholar
Sattar, S. A., Lloyd-Evans, N., Springthorpe, V. S. & Nair, R. C. (1986). Institutional outbreaks of rotavirus diarrhoea: potential role of fomites and environmental surfaces as vehicles for virus transmission. Journal of Hygiene 96, 277289.CrossRefGoogle ScholarPubMed
Sattar, S. A., Raphael, R. A., Lochnan, H. & Springthorpe, V. S. (1983). Rotavirus inactivation by chemical disinfectants and antiseptics used in hospitals. Canadian Journal of Microbiology 29, 14641469.CrossRefGoogle ScholarPubMed
Schurmann, W. & Eggers, H. J. (1983). Antiviral activity of an alcoholic hand disinfectant. Comparison of the in vitro suspension test with in vivo experiments on hands, and on individual fingertips. Antiviral Research 3, 2541.CrossRefGoogle ScholarPubMed
Scott, F. W. (1980). Viral disinfectants and feline viruses. American Journal of Veterinary Research 41, 410414.Google ScholarPubMed
Springthorpe, V. S., Grenier, J. L., Lloyd-Evans, N. & Sattar, S. A. (1986). Chemical disinfection of human rotaviruses: efficacy of commercially-available products in suspension tests. Journal of Hygiene 97, 139161.CrossRefGoogle ScholarPubMed
Vaucher, Y. E., Ray, C. G., Minnich, L. L., Payne, C. M., Beck, D. & Lowe, P. (1982). Pleomorphic, enveloped, virus-like particles associated with gastroenteritis illness in neonates. Journal of Infectious Diseases 145, 2736.CrossRefGoogle Scholar
Wallis, C., Behbehani, A. M., Lee, L. H. & Bianchi, M. (1963). The ineffectiveness of organic iodine as a viral disinfectant. American Journal of Hygiene 78, 325329.Google ScholarPubMed
Ward, R. L., Bernstein, D. I., Young, E. C., Sherwood, J. R., Knowlton, D. R. & Schiff, G. M. (1986). Human rotavirus studies in volunteers: determination of infectious dose and serological response to infection. Journal of Infectious Diseases 154, 871880.CrossRefGoogle ScholarPubMed
Wenzel, R. P., Hendley, J. O., Davies, J. A. & Gwaltney, J. M. Jr. (1974). Coronavirus infections in military recruits: three-year study with coronavirus strains OC43 and 229E. American Review of Respiratory Diseases 109, 621624.Google ScholarPubMed
Westwood, J. C. N. & Sattar, S. A. (1976). The minimal infective dose. In Viruses in Water (ed. Berg, G. et al. ). pp. 6169. Washington, D.C., USA: American Public Health Association Inc.Google Scholar
World Health Organisation (1985). Outbreak of parainfluenza virus type 3 in a paediatric ward. Weekly Epidemiological Record 60, 2425.Google Scholar