Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T17:47:49.168Z Has data issue: false hasContentIssue false

The occurrence of salmonellas and lactose-negative Arizonas in reptiles in The Netherlands, and a comparison of three enrichment methods used in their isolation

Published online by Cambridge University Press:  15 May 2009

J. P. Koopman
Affiliation:
Central Animal Laboratory, Catholic University of Nijmegen, The Netherlands
F. G. J. Janssen
Affiliation:
Central Animal Laboratory, Catholic University of Nijmegen, The Netherlands
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A survey was conducted in 1971 in healthy reptiles supplied to the Central Animal Laboratory of Nijmegen for experimental animal research. In order to determine which salmonella serotypes occur, and whether there are several serotypes per animal, several strains of each positive sample were typed.

It was found that 160 of 169 samples contained salmonellas or lactose-negative Arizonas or both, and 95 different serotypes were isolated.

Of 127 animals examined individually, 67 were carriers of more than one sero-type, 42 animals having two types, 21 three types and 4 animals four types.

Three enrichment methods were compared. These were tetrathionate broth incubated at 37° C. (T37) and at 43° C. (T43), and selenite broth incubated at 37° C. (SB). All were incubated for 48 hr. before subculture on brilliant-green agar plates. The enrichment methods T37, T43 and SB produced 99, 125 and 123 positive samples respectively, when taken separately. The combinations of T 37 and T43, T37 and SB, and T43 and SB produced 145, 142 and 150 positive samples respectively.

The yield of serotypes in comparable samples showed no difference between the three enrichment methods. With the use of two methods the yield increased by about 38 % compared with one method, and the combination of three methods showed an increase in serotype yield of about 64 % compared with one method. A distinct preference by serotypes for definite enrichment methods was not proved.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

References

REFERENCES

Bövre, K. & Sandbu, P. (1959). Salmonella-excreting tortoises in Oslo. Acta pathologica et microbiologica Scandinavica 46, 339.CrossRefGoogle ScholarPubMed
Boycott, J. A., Taylor, J. & Douglas, S. H. (1953). Salmonella in tortoises. Journal of Pathology and Bacteriology 65, 401.CrossRefGoogle ScholarPubMed
Cowan, S. T. & Steel, K. J. (1965). Manual of the Identification of Medical Bacteria. Cambridge University Press.Google Scholar
Darasse, H., Le Minor, L. & Lecomte, M. (1959). Isolement de plusieurs Salmonella dans une eau de distribution: originalité de la contamination. Bulletin de la Société de Pathologie Exotique 52, 53.Google Scholar
Dimow, I. (1964). Vertbreitung und Charakter der fäkalen Salmonella- und Arizona-Daueraus-scheidung bei den freilebenden Landsehildröten. Dissertation, Sofia.Google Scholar
Hamel, F. A. & De Mcinnes, H. M. (1971). Lizards as vectors of human salmonellosis. Journal of Hygiene 69, 247.CrossRefGoogle ScholarPubMed
Hinshaw, W. R. & Mcneil, E. (1947). Lizards as carriers of Salmonella and Paracolon bacteria. Journal of Bacteriology 53, 715.CrossRefGoogle ScholarPubMed
Koopman, J. P. & Jansen, F. G. J. (1972 a). Eine einfache Methode vom Nachweis von Salmonellen in Hunde- und Katzenkot. Zeitschrift für Versuchstierkunde 14, 65.Google Scholar
Koopman, J. P. & Janssen, F. G. J. (1972 b). Das Vorkommen und die Behandlung von Salmonellen-Infektionen bein zu Tierversuchen erworbenen Hunden, Katzen und eignigen anderen Tierarten. Deutsche Tierärztliche Wochenschrift 79, 218.Google Scholar
Lee, P. E. & Mackerras, I. M. (1955). Salmonella infections of Australian native animals. Australian Journal of Experimental Biology and Medical Science 33, 117.CrossRefGoogle ScholarPubMed
Leistner, L., Deibel, R. H., Johantges, J. & Niven, C. F. Jr (1962). Beitrag zur Methodik des Nachweises von Salmonellen. Die Fleischwirtschaft 14, 1160.Google Scholar
Luethgen, W. & Lucas, H. (1971). Untersuchungen zum Nachweis von Salmonellen in Taubenkotproben bei Anreicherungs-temperaturen von 37° C und 43° C unter Verwendung verschiedener Anreicherungsmedien. Deutsche Tierärztliche Wochenschrift 78, 188.Google Scholar
Mackey, J. P. (1955). Salmonellosis in Dar Es Salaam. The East African Medical Journal 32, 1.Google ScholarPubMed
Milanov, M., Chilev, D., Pashev, S. & Slavkov, I. (1966). A reservoir of Salmonella genus in nature. First communication. A study of natural Salmonella foci. Veterinary Science 3, 749.Google Scholar
Mueller, W. (1963). Über die Möglichkeit der Verbreitung Salmonellen durch Rieselfeldgras. Vet. med. thesis, Freie Universität, Berlin.Google Scholar
Nitzschke, E. (1951). Untersuchungen über die Leistungsfähigkeit des Selenit F Mediums zur Anreicherung von Salmonellen im Vergleich mit der Tetrathionatbouillon. Vet. med. thesis, Justus Liebig Hochschule, Giessen.Google Scholar
Zwart, P. (1960). Salmonella and Arizona infections in reptiles in the Netherlands. Antonie van Leeuwenhoek 26, 250.CrossRefGoogle ScholarPubMed
Zwart, P., Poelma, F. G. & Strik, W. J. (1970). The distribution of various types of Salmonellae and Arizonas in reptiles. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. I. Abt. (Originale) 213, 201.Google ScholarPubMed