Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-28T12:43:59.206Z Has data issue: false hasContentIssue false

Expression of GABA in the fetal, postnatal, and adult human retinas: An immunohistochemical study

Published online by Cambridge University Press:  02 June 2009

T. C. Nag
Affiliation:
Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
S. Wadhwa
Affiliation:
Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India

Abstract

The expression of GABA in the human fetal (12–25 weeks of gestation), postnatal (five-month-old), and adult (35-year-old) retinas was investigated by immunohistochemistry. GABA expression was seen as early as 12 weeks in the undifferentiated cells of the inner neuroblast zone; a few optic nerve fiber layer axons were clearly labeled, suggesting that some of the stained cell bodies were prospective ganglion cells, others could be displaced amacrine cells. From 16–17 to 24–25 weeks, intense labeling was found in the amacrine, displaced amacrine, and some ganglion cells. During this time period, horizontal cells (identified by calbindin immunohistochemistry), undergoing migration (periphery) and differentiation (center), expressed GABA prominently. In the postnatal retina, some horizontal cells were moderately labeled, but very weakly in a few cells, in the adult. The Müller cells developed immunoreactivity first weakly at 12 weeks and then moderately from 16–17 weeks onward. The staining was also evident in the postnatal and adult retinas, showing labeled processes of these glial cells. Virtually no axons in the adult optic nerve and nerve fiber layer were stained; the staining was restricted to a few, large ganglion cells and displaced amacrine cells. Some amacrines were also labeled. The possibility that GABA might play a role in horizontal cell differentiation and maturation is highlighted. Other evidences suggest that GABA might play a role in metabolism during retinal development.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agardh, E., Bruun, A., Ehinger, B., Ekstrom, P., Van Veen, T. & Wu, J.Y. (1987 a). Gamma aminobutyric acid and glutamic acid decarboxylase immunoreactive neurons in the retina of different vertebrates. Journal of Comparative Neurology 258, 622630.CrossRefGoogle ScholarPubMed
Agardh, E., Ehinger, B. & Wu, J.Y. (1987 b). GABA and GAD-like immunoreactivity in the primate retina. Histochemistry 86, 485490.CrossRefGoogle ScholarPubMed
Baimbridge, K.G., Celio, M.R. & Rogers, J.H. (1992). Calcium-binding proteins in the nervous system. Trends in Neurosciences 15, 303308.CrossRefGoogle ScholarPubMed
Baxter, C.F. (1976). Some recent advances in studies of GABA metabolism and compartmentations. In GABA in Nervous System Function, ed. Balazs, R. & Cremer, J.E., pp. 5770. London: Macmillan.Google Scholar
Blanks, J.C. & Roffler-Tarlov, S. (1982). Differential localization of radioactive gamma-aminobutyric acid and muscimol in isolated and in vivo mouse retina. Experimental Eye Research 35, 573584.CrossRefGoogle ScholarPubMed
Brandon, C. (1985). Retinal GABA neurons: Localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Research 344, 286295.CrossRefGoogle ScholarPubMed
Brandon, C., Lam, D.M.K. & Wu, J.Y. (1979). The γ-aminobutyric acid system in rabbit retina: Localization by immunocytochemistry and autoradiography. Proceedings of the National Academy of Sciences of the U.S.A. 81, 38883892.Google Scholar
Brecha, N. (1983). Retinal neurotransmitters: histochemical and biochemical studies. In Chemical Neuroanatomy, ed. Emdon, P.C., pp. 85129. New York: Raven Press.Google Scholar
Bruun, A. & Ehinger, B. (1974). Uptake of certain possible neurotransmitters into retinal neurons of some mammals. Experimental Eye Research 19, 435447.CrossRefGoogle ScholarPubMed
Caruso, D.M., Owczarzak, M.T., Goebel, D.J., Hazlett, J.C. & Pourcho, R.G. (1989). GABA-immunoreactivity in ganglion cells of the rat retina. Brain Research 476, 129134.CrossRefGoogle ScholarPubMed
Crooks, J. & Kolb, H. (1992). Localization of GABA, glycine, glutamate and tyrosine hydroxylase in the human retina. Journal of Comparative Neurology 315, 287302.CrossRefGoogle ScholarPubMed
Davanger, S., Ottersen, O.P. & Storm-Mathisen, J. (1991). Glutamate, GABA and glycine in the human retina; an immunocytochemical investigation. Journal of Comparative Neurology 311, 483494.CrossRefGoogle ScholarPubMed
Ehinger, B. (1977). Glial and neuronal uptake of GABA, glutamic acid, glutamine and glutathione in the rabbit retina. Experimental Eye Research 25, 221234.CrossRefGoogle ScholarPubMed
Freed, M.A. (1992). GABAergic circuits in the mammalian retina. Progress in Brain Research 90, 107131.CrossRefGoogle ScholarPubMed
Grünert, U., & Wässle, H. (1990). GABA-like immunoreactivity in the macaque monkey retina: A light and electron microscopic study. Journal of Comparative Neurology 297, 509524.CrossRefGoogle ScholarPubMed
Hamilton, W.J., Boyd, J.D. & Mossman, J.W.W. (1962). Human Embryology, 2nd edition. Cambridge, UK: W. Herfere.Google Scholar
Hendrickson, A.E., Ryan, M., Noble, B. & Wu, J.Y. (1985). Colocalization of [H3] muscimol and antisera to GABA and glutamic acid decarboxylase within the same neurons in monkey retina. Brain Research 348, 391396.CrossRefGoogle ScholarPubMed
Koontz, M.A. & Hendrickson, A.E. (1990). Distribution of GABA-immunoreactive amacrine cell synapses in the inner plexiform layer of macaque monkey retina. Visual Neuroscience 5, 1728.CrossRefGoogle ScholarPubMed
Koontz, M.A., Hendrickson, A.E. & Ryan, M.K. (1989). GABA-immunoreactive synaptic plexus in the nerve fiber layer of primate retina. Visual Neuroscience 2, 1925.CrossRefGoogle ScholarPubMed
Koontz, M.A., Hendrickson, L.E., Brace, S.T. & Hendrickson, A.E. (1993). Immunocytochemical localization of GABA and glycine in amacrine and displaced amacrine cells of macaque monkey retina. Vision Research 33, 26172628.CrossRefGoogle ScholarPubMed
Lake, N. (1992). Taurine, GABA and GFAP immunoreactivity in the developing and adult rat optic nerve. Brain Research 596, 124132.CrossRefGoogle ScholarPubMed
Lam, D.M.K. & Hollyfield, J.G. (1980). Localization of putative amino acid neurotransmitters in the human retina. Experimental Eye Research 31, 729732.CrossRefGoogle ScholarPubMed
Lugo-Garcia, N. & Blanco, R.E. (1991). Localization of GAD and GABA-like immunoreactivity in ground squirrel retina: Retrograde labeling demonstrates GAD positive ganglion cells. Brain Research 564, 1926.CrossRefGoogle ScholarPubMed
Marshall, J. & Voaden, M.J. (1974). An investigation of the cells incorporating [H3] glycine in the isolated retina of the rat. Experimental Eye Research 18, 367370.CrossRefGoogle ScholarPubMed
Marshall, J. & Voaden, M.J. (1975). Autoradiographic identification of the cells accumulating H3 - γ aminobutyric acid in mammalian retinae: A species comparison. Vision Research 15, 459461.CrossRefGoogle Scholar
Massey, S.C. & Redburn, D.A. (1987). Transmitter circuits in the vertebrate retina. Progress in Neurobiology 28, 5596.CrossRefGoogle ScholarPubMed
Mosinger, J. & Yazulla, S. (1987). Double-label analysis of GAD and GABA-like immunoreactivity in the rabbit retina. Vision Research 27, 2330.CrossRefGoogle ScholarPubMed
Mosinger, J.L., Yazulla, S. & Studholme, K.M. (1986). GABA-like immunoreactivity in the vertebrate retina: A species comparison. Experimental Eye Research 42, 631644.CrossRefGoogle ScholarPubMed
Nag, T.C. & Wadhwa, S. (1996). Calbindin and parvalbumin immunoreactivity in the developing and adult human retina. Developmental Brain Research 93, 2332.CrossRefGoogle ScholarPubMed
Neal, M.J. & Iversen, L.L. (1972). Autoradiographic identification of H3-GABA in rat retina. Nature 235, 217218.Google Scholar
Nishimura, Y., Schwartz, M.L. & Rakic, P. (1985). Localisation of γ-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina. Brain Research 359, 351355.CrossRefGoogle ScholarPubMed
Osborne, N.N., Patel, S., Beaton, D.W. & Nevhoff, V. (1986). GABA neurons in retinas of different species and their postnatal development in situ and in culture in the rabbit retina. Cell and Tissue Research 243, 117123.CrossRefGoogle ScholarPubMed
Perez, M.T.R. & Davanger, S. (1994). Distribution of GABA immunoreactivity in kainic acid-treated rabbit retina. Experimental Brain Research 100, 227238.CrossRefGoogle ScholarPubMed
Pourcho, R.G. (1980). Uptake of [H3] glycine and [H3] GABA by amacrine cells in the cat retina. Brain Research 198, 333346.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Owczarzak, M.T. (1989). Distribution of GABA immunoreactivity in the cat retina: A light- and electron-microscopic study. Visual Neuroscience 2, 425435.CrossRefGoogle ScholarPubMed
Pow, D.V., Crook, D.K. & Wong, R.O.L. (1994). Early appearance and transient expression of putative aminoacid neurotransmitters and related molecules in the developing rabbit retina: An immunocytochemical study. Visual Neuroscience 11, 11151134.CrossRefGoogle ScholarPubMed
Redburn, D.A. (1992). Development of GABAergic neurons in the mammalian retina. Progress in Brain Research 90, 133147.CrossRefGoogle ScholarPubMed
Redburn, D.A. & Madtes, P. Jr (1986). Postnatal development of H3-GABA accumulating cells in rabbit retina. Journal of Comparative Neurology 243, 4157.CrossRefGoogle Scholar
Rogers, P.C. & Pow, D.V. (1995). Immunocytochemical evidence for an axonal localization of GABA in the optic nerves of rabbits, rats, and cats. Visual Neuroscience 12, 11431149.CrossRefGoogle Scholar
Rohrenbeck, J., Wässle, H. & Boycott, B.B. (1989). Horizontal cells in the monkey retina: Immunocytochemical staining with antibodies against calcium-binding proteins. European Journal of Neuroscience 1, 407420.CrossRefGoogle ScholarPubMed
Rowe-Rendleman, C.L. & Redburn, D.A. (1994). Regional localization of glutamic acid decarboxylase immunoreactivity in retina of developing rabbit. Investigative Ophthalmology and Visual Science (Suppl.) 35, 1365.Google Scholar
Ryan, M.K. & Hendrickson, A.E. (1987). Interplexiform cells in macaque monkey retina. Experimental Eye Research 45, 5766.CrossRefGoogle ScholarPubMed
Sakatani, K., Black, J.A. & Kocsis, J.D. (1992). Transient presence and functional interaction of endogenous GABA and GABAA receptors in developing rat optic nerve. Proceedings of the Royal Society B (London) 247, 155161.Google ScholarPubMed
Sarthy, P.V. & Fu, M. (1989 a). Localization of L-glutamic acid decarboxylase mRNA in cat retinal horizontal cells by in situ hybridization. Journal of Comparative Neurology 288, 593600.CrossRefGoogle ScholarPubMed
Sarthy, P.V. & FU, M. (1989 b). Localization of L-glutamic acid decarboxylase mRNA in monkey and human retina by in situ hybridization. Journal of Comparative Neurology 288, 691697.CrossRefGoogle ScholarPubMed
Schnitzer, J. & Rusoff, A.C. (1984). Horizontal cells of the mouse retina contain glutamic acid decarboxylase-like immunoreactivity during early developmental stages. Journal of Neuroscience 4, 29482955.CrossRefGoogle ScholarPubMed
Schousboe, A. & Redburn, D.A. (1995). Modulatory actions of gamma-aminobutyric acid (GABA) on GABA type A receptor subunit expression and function. Journal of Neuroscience Research 41, 17.CrossRefGoogle ScholarPubMed
Seiler, M. & Aramant, R.B. (1994). Photoreceptor and glial markers in human embryonic retina and in human embryonic retinal transplants to rat retina. Developmental Brain Research 80, 8195.CrossRefGoogle ScholarPubMed
Thornberg, T., Erickson, A. & Hendrickson, A. (1991). Development of GABAergic neurons in Macaca monkey retina. Investigative Ophthalmology and Visual Science (Suppl.) 33, 924.Google Scholar
Vaney, D.I. & Young, H.M. (1988). GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Research 438, 369373.CrossRefGoogle ScholarPubMed
Vardi, N., Kaufman, D.L. & Sterling, P. (1994). Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase. Visual Neuroscience 11, 135142.CrossRefGoogle Scholar
Versaux-Botteri, C., Pochet, R. & Nguyen-Legros, J. (1989). Immunohistochemical localization of GABA-containing neurones during postnatal development of the rat retinas. Investigative Ophthalmology and Visual Science 30, 652659.Google Scholar
Wadhwa, S., Jotwani, G. & Bijlani, V. (1993). Human retinal ganglion cell development in early prenatal period using carbocyanine dye Dil. Neuroscience Letters 157, 175178.CrossRefGoogle Scholar
Wässle, H. & Chun, M.H. (1989). GABA-like immunoreactivity in the cat retina: Light microscopy. Journal of Comparative Neurology 279, 4354.CrossRefGoogle ScholarPubMed
Wolff, J.R. (1981). Evidence for a dual role of GABA as a synaptic transmitter and a promoter of synaptogenesis. In Amino-acid Neurotransmitters, ed. Defeudis, F.V. & Mandel, P., pp. 459466. New York: Raven Press.Google Scholar
Yazulla, S. (1986). GABAergic mechanisms in the retina. Progress in Retinal Research 5, 152.CrossRefGoogle Scholar
Yu, B.C.-Y., Watt, C.B., Lam, D.M.K. & Fry, K.R. (1988). GABAergic ganglion cells in the rabbit retina. Brain Research 439, 379382.CrossRefGoogle ScholarPubMed