Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-17T19:31:24.288Z Has data issue: false hasContentIssue false

Visual latencies in areas V1 and V2 of the macaque monkey

Published online by Cambridge University Press:  02 June 2009

L.G. Nowak
Affiliation:
Cerveau et Vision, INSERM Unité 371, 18 avenue du Doyen Lepine, 69500 Bron/Lyon, France
M.H.J. Munk
Affiliation:
Cerveau et Vision, INSERM Unité 371, 18 avenue du Doyen Lepine, 69500 Bron/Lyon, France
P. Girard
Affiliation:
Cerveau et Vision, INSERM Unité 371, 18 avenue du Doyen Lepine, 69500 Bron/Lyon, France
J. Bullier
Affiliation:
Cerveau et Vision, INSERM Unité 371, 18 avenue du Doyen Lepine, 69500 Bron/Lyon, France

Abstract

Latencies to small flashing spots of light were measured in different layers of areas V1 and V2 in anesthetized and paralyzed macaque monkeys. The shortest latencies were found in layers 4Cα and 4B of area V1. Latencies in layer 4Cβ were on average 20 ms longer than those in 4Cα and 4B. The shortest latencies in area V2 were observed in the infragranular layers and they did not differ significantly from those found in the infragranular layers in V1. Similarly, latencies in the supragranular layers of V2 were not significantly different from those measured in the supragranular layers of V1. These results show that, in area V1, neurons of the magnocellular pathway are activated on average 20 ms earlier than those of the parvocellular pathway. Our data also suggest that much processing begins simultaneously in areas V1 and V2.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blasdel, G.G. & Lund, J.S. (1983). Termination of afferent axons in macaque striate cortex. Journal of Neuroscience 3, 13891413.CrossRefGoogle ScholarPubMed
Bolz, J., Rosner, G. & Wässle, H. (1982). Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina. Journal of Physiology 328, 171190.CrossRefGoogle ScholarPubMed
Bullier, J. & Henry, G.H. (1980). Ordinal position and afferent input of neurons in monkey striate cortex. Journal of Comparative Neurology 193, 913935.Google ScholarPubMed
Casagrande, V.A. (1994). A third parallel visual pathway to primate area V1. Trends in Neuroscience 17, 305310.CrossRefGoogle ScholarPubMed
Celebrini, S., Thorpe, S., Trotter, Y. & Imbert, M. (1993). Dynamics of orientation coding in area V1 of the awake primate. Visual Neuroscience 10, 811825.CrossRefGoogle ScholarPubMed
Creutzfeldt, O.D. & Ito, M. (1968). Functional synaptic organization of primary visual cortex neurones in the cat. Experimental Brain Research 6, 324352.CrossRefGoogle ScholarPubMed
Creutzfeldt, O.D., Rosina, A., Ito, M. & Probst, W. (1969). Visual evoked response of single cells and the EEC in primary visual area of the cat. Journal of Neurophysiology 32, 127139.CrossRefGoogle Scholar
Creutzfeldt, O.D., Weber, H., Tanaka, M. & Lee, B.B. (1987). Neuronal representation of spectral and spatial stimulus aspects in foveal and parafoveal area 17 of the awake monkey. Experimental Brain Research 68, 541564.CrossRefGoogle ScholarPubMed
Doty, R.W. & Kmura, D.S. (1963). Oscillatory potentials in the visual system of cats and monkeys. Journal of Physiology 168, 205218.CrossRefGoogle ScholarPubMed
Dreher, B., Fukada, Y. & Rodieck, R.W. (1976). Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of Old-World primates. Journal of Physiology 258, 433452.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Van Essen, D.C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 147.CrossRefGoogle ScholarPubMed
Fitzpatrick, D., Itoh, K. & Diamond, I.T. (1983). The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey. Journal of Neuroscience 3, 673702.CrossRefGoogle ScholarPubMed
Fitzpatrick, D., Lund, J.S. & Blasdel, G.G. (1985). Intrinsic connections of macaque striate cortex. Afferent and efferent connections of lamina 4C. Journal of Neuroscience 5, 33293349.CrossRefGoogle ScholarPubMed
Fitzpatrick, D., Usrey, W.M., Schofield, B.R. & Einstein, G. (1994). The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Visual Neuroscience 11, 307315.CrossRefGoogle ScholarPubMed
Freund, T.F., Martin, K.A.C., Somogyi, P. & Whitteridge, D. (1985). Innervation of cat visual area 17 and 18 by physiologically identified X-and Y-type thalamic afferents. II. Identification of postsynap-tic targets by GABA immunocytochemistry and Golgi impregnation. Journal of Comparative Neurology 242, 275291.CrossRefGoogle ScholarPubMed
Freund, T.F., Martin, K.A.C., Soltesz, I., Somogyi, P. & Whitteridge, D. (1989). Arborization pattern and postsynaptic targets of physiologically identified thalamocortical afférents in striate cortex of the macaque monkey. Journal of Comparative Neurology 289, 315336.CrossRefGoogle ScholarPubMed
Gilbert, C.D. (1977). Laminar differences in receptive-field properties in cat primary visual cortex. Journal of Physiology 268, 391421.CrossRefGoogle ScholarPubMed
Girard, P. & Bullier, J. (1989). Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. Journal of Neurophysiology 62, 12871302.CrossRefGoogle ScholarPubMed
Girard, P., Salin, P.A. & Bullier, J. (1991 a). Visual activity in macaque area V4 depends on area 17 input. Neuroreport 2, 8184.CrossRefGoogle ScholarPubMed
Girard, P., Salin, P.A. & Bullier, J. (1991 b). Visual activity in areas V3A and V3 during reversible inactivation of area V1 in the macaque monkey. Journal of Neurophysiology 66, 14931503.CrossRefGoogle ScholarPubMed
Girard, P., Salin, P.A. & Bullier, J. (1992). Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1. Journal of Neurophysiology 67, 110.CrossRefGoogle ScholarPubMed
Grieve, K.L. & Sillito, A.M. (1991). The length summation properties of layer V1 cells in the visual cortex and hypercomplex cell end zone inhibition. Experimental Brain Research 84, 319325.CrossRefGoogle Scholar
Hendrickson, A.E., Wilson, J.R. & Ogren, M.P. (1978). The neuroanatomical organization of pathways between dorsal lateral geniculate nucleus and visual cortex in Old- and New-World primates. Journal of Comparative Neurology 182, 123136.CrossRefGoogle ScholarPubMed
Hendry, S.H.C. & Yoshioka, T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science 264, 575577.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1972). Laminar and columnar distribution of geniculo-cortical fibers in the monkey. Journal of Comparative Neurology 146, 421450.CrossRefGoogle ScholarPubMed
Irvin, O.E., Norton, T.T., Sesma, M.A. & Casagrande, V.A. (1986). W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Golago crassicaudatus). Brain Research 362, 254270.CrossRefGoogle ScholarPubMed
Kennedy, H. & Bullier, J. (1985). A double-labelling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. Journal of Neuroscience 5, 28152830.CrossRefGoogle Scholar
Knierim, J.J. & Van Essen, D.C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology 67, 961980.CrossRefGoogle ScholarPubMed
Lachica, E.A., Beck, P.D. & Casagrande, V.A. (1992). Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer III. Proceedings of the National Academy of Sciences of the U.S.A. 89, 35663570.CrossRefGoogle ScholarPubMed
Légendy, C.R. & Salcman, M. (1985). Bursts and recurrence of bursts in the spike trains of spontaneously active striate cortex neurons. Journal of Neurophysiology 53, 926939.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4, 309356.CrossRefGoogle ScholarPubMed
Livingstone, M.S. & Hubel, D.H. (1987). Connections between layer 4B of area 17 and thick cytochrome oxidase stripes of area 18 in the squirrel monkey. Journal of Neuroscience 7, 33713377.CrossRefGoogle ScholarPubMed
Lund, J.S. (1973). Organization of neurons in the visual cortex, area 17, of the Macaque monkey. Journal of Comparative Neurology 147, 455495.CrossRefGoogle Scholar
Lund, J.S. & Boothe, R.G. (1975). Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology 159, 305334.CrossRefGoogle Scholar
Lund, J.S., Hendrickson, A.E., Ogren, M.P. & Tobin, E.A. (1981). Anatomical organization of primate visual cortex area VII. Journal of Comparative Neurology 202, 1945.CrossRefGoogle ScholarPubMed
Marrocco, R.T. (1976). Sustained and transient cells in monkey lateral geniculate nucleus: Conduction velocities and response properties. Journal of Neurophysiology 39, 340353.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. (1987). Physiological evidence for two visual subsystems. In Matlers of Intelligence, ed. Vaina, L.M., Reidei Pub. Co.Google Scholar
Maunsell, J.H.R. & Gibson, J.R. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68, 13321344.CrossRefGoogle ScholarPubMed
Mitzdorf, U. & Singer, W. (1979). Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials. Journal of Comparative Neurology 187, 7184.CrossRefGoogle ScholarPubMed
Nealey, T.A. & Maunsell, J.H.R. (1994). Magnocellular and parvo-cellular contributions to the responses of neurons in macaque striate cortex. Journal of Neuroscience 14, 20692079.CrossRefGoogle Scholar
Raiguel, S.E., Lagae, L., Gulyas, B. & Orban, O.A. (1989). Response latencies of visual cells in macaque areas V1, V2, and V5. Brain Research 493, 155159.CrossRefGoogle ScholarPubMed
Rockland, K.S. & Pandya, D.N. (1979). Laminar origins and terminations of cortical connections to the occipital lobe in the rhesus monkey. Brain Research 179, 320.CrossRefGoogle Scholar
Rockland, K.S. & Virga, A. (1990). Organization of individual cortical axons projecting from area V1 (area 17) to V2 (area 18) in the macaque monkey. Visual Neuroscience 4, 1128.CrossRefGoogle ScholarPubMed
Sandell, J.H. & Schiller, P.H. (1982). Effect of cooling area 18 on striate cortex cells in the squirrel monkey. Journal of Neurophysiology 48, 3848.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Malpeli, J.G. (1977). The effect of striate cortex cooling on area 18 cells in the monkey. Brain Research 126, 366369.CrossRefGoogle ScholarPubMed
Schiller, P.H. & Malpeli, J.G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology 41, 788797.CrossRefGoogle ScholarPubMed
Schiller, P.H., Malpeli, J.G. & Schein, S. J. (1979). Composition of geniculostriate input to superior colliculus of the rhesus monkey. Journal of Neurophysiology 42, 11241133.CrossRefGoogle ScholarPubMed
Smith, D.R. & Smith, G.K. (1965). A statistical analysis of the continual activity of single cortical neurones of the cat unanaesthetized isolated forebrain. Biophysical Journal 5, 4774.CrossRefGoogle Scholar
Tootell, R.B.H., Hamilton, S.L. & Swtikes, E. (1988). Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. Journal of Neuroscience 8, 15941609.CrossRefGoogle ScholarPubMed
Vogels, R. & Orban, G.A. (1990). How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey. Journal of Neuroscience 10, 35433558.CrossRefGoogle ScholarPubMed
Welker, E., Armstrong-James, M., Van Der Loos, H. & Kraftsik, R. (1993). The mode of activation of a barrel column: Response properties of single units in the somatosensory cortex of the mouse upon whisker deflection. European Journal of Neuroscience 5, 691712.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1983). Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys. Journal of Comparative Neurology 220, 253279.CrossRefGoogle ScholarPubMed
Wiesel, T.N. & Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology 29, 11151156.CrossRefGoogle ScholarPubMed
Yoshioka, T., Levitt, J.B. & Lund, J.S. (1994). Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections. Visual Neuroscience 11, 467489.CrossRefGoogle ScholarPubMed