Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-18T09:11:37.569Z Has data issue: false hasContentIssue false

Late Precambrian glacial climate and the Earth's obliquity

Published online by Cambridge University Press:  01 May 2009

G. E. Williams
Affiliation:
P.O. Box 102, St Peters, South Australia 5069, Australia

Summary

Late Precambrian (∼ 750±200 Ma) glaciogenic sequences exhibit substantial evidence for marked climatic inequability of seasonal and longer periodicity (10° to ∼ 106 yrs): (1) tillites are closely associated with dolomites, limestones and evaporites apparently of warm-water origin; (2) tillites occur with red beds and iron-formations whose iron probably was derived ultimately from lateritic weathering; (3) glacial dropstones occur locally within carbonates and iron-formations; (4) laminae, interpreted as varves by many workers, are common in argillites, carbonates and iron-formations; and (5) permafrost structures attributable to repeated seasonal changes of temperature are locally abundant. Such climatic, particularly seasonal inequability apparently conflicts however with the probable low (≲30°) palaeolatitudes of deposition of numerous late Precambrian glaciogenic sequences.

The contradictions presented by such sequences may be resolved by postulating a considerably increased obliquity of the ecliptic (ε) in late Precambrian time. Substantial increase in e would: (1) greatly amplify global seasonality; (2) weaken climatic zonation, thus allowing warm-water sedimentation and lateritic weathering over wide latitudes; and (3) increase the ratio of radiation received annually at either pole to that received at the equator, so when 54° < ε < 126° low and middle latitudes (≤ 43°) would be glaciated in preference to the poles. Ice sheets and permafrost thus can be envisaged principally in low and middle latitudes with contiguous warm-water and iron-rich facies under a markedly seasonal climate. The concept of secular change of e is supported by other geological evidence.

Type
Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalto, K. R. 1971. Glacial marine sedimentation and stratigraphy of the Toby Conglomerate (upper Proterozoic), southeastern British Columbia, northwestern Idaho and northeastern Washington. Can. J. Earth Sci. 8, 753–87.Google Scholar
Alexandrov, E. A. 1973. The Precambrian banded iron-formations of the Soviet Union. Econ. Geol. 68, 1035–62.Google Scholar
Allard, H. A. 1948. Length of day in the climates of past geological eras and its possible effects upon changes in plant life. In Murneek, A. E. & Whyte, R. O. (Eds): Vernalization and Photoperiodism, 101–19. Chronica Botanica Co., Waltham, Mass.Google Scholar
Anderson, M. M. 1972. A possible time span for the late Precambrian of the Avalon Peninsula, southeastern Newfoundland, in the light of worldwide correlation of fossils, tillites, and rock units within the succession. Can. J. Earth Sci. 9, 1710–26.Google Scholar
Anderson, R. Y. & Koopmans, L. H. 1963. Harmonic analysis of varve time series. J. geophys. Res. 68, 877–93.Google Scholar
Andersson, L. E. & Fix, J. D. 1973. Pluto: new photometry and a determination of the axis of rotation. Icarus 20, 279–83.Google Scholar
Banks, N. L., Edwards, M. B. & Reading, H. G. 1969. Late Pre-Cambrian glaciation in Scotland: Discussion. Proc. geol. Soc. Lond. 1657, 191–2.Google Scholar
Barnard, P. D. W. 1973. Mesozoic floras. Spec. Pap. Palaeont. 12, 175–87.Google Scholar
Berthelsen, A. & Noe-Nygaard, A. 1965. The Precambrian of Greenland. In Rankama, K. (Ed.): The Precambrian 2, 113262. Interscience, New York.Google Scholar
Bessonova, V. Y. & Chumakov, N. M. 1968. Glacial sediments of the upper Precambrian of Belorussia. Akad. Nauk SSSR Doklady 178, 53–6 (A.G.I. translation).Google Scholar
Beuf, S., Biju-Duval, B., de Charpal, O., Rognon, P., Gariel, O. & Bennacef, A. 1971. Les Grès du Paléozoïque Inférieur au Sahara. 464 pp. Technip, Paris.Google Scholar
Beukes, N. J. 1973. Precambrian iron-formations of southern Africa. Econ. Geol. 68, 9601004.Google Scholar
Bidgood, D. E. T. & Harland, W. B. 1961. Palaeomagnetism in some East Greenland sedimentary rocks. Nature, Lond. 189, 633–4.Google Scholar
Biju-Duval, B. & Gariel, O. 1969. Nouvelles observations sur les phénomènes Glaciaires ‘Eocambriens’ de la Bordure Nord de la Synéclise de Taoudeni, entre le Hank et le Tanezrouft, Sahara Occidental. Palaeogeogr. Palaeoclim. Palaeoecol. 6, 283315.Google Scholar
Binda, P. L. & Van Eden, J. G. 1972. Sedimentological evidence on the origin of the Precambrian Great Conglomerate (Kundelungu Tillite), Zambia. Palaeogeogr. Palaeoclim. Palaeoecol. 12, 151–68.Google Scholar
Bjørlykke, K. 1967. The Eocambrian ‘Reusch Moraine’ at Bigganjargga and the geology around Varangerfjord, northern Norway. Norges geol. Unders. 251, 1844.Google Scholar
Bjørlykke, K. 1969. Late Precambrian glaciation in Scotland: Discussion. Proc. geol. Soc. Lond. 1657, 190.Google Scholar
Bjørlykke, K. 1974. Glacial striations on clast from the Moelv Tillite of the late Precambrian of southern Norway. Am. J. Sci. 274, 443–8.Google Scholar
Blackwelder, E. 1932. An ancient glacial formation in Utah. J. Geol. 40, 289304.Google Scholar
Blondeau, K. M. & Lowe, D. R. 1972. Upper Precambrian glacial deposits of the Mount Rogers Formation, central Appalachians, USA. 24th Int. geol. Congr. 1, 325–32.Google Scholar
Bozhko, N. A., Kazakov, G. A., Trofimov, D. M., Knoppe, K. G. & Gatinskiy, Y. A. 1972. New absolute dating of west African glauconites. Akad. Nauk SSSR Doklady 198, 138–9 (A.G.I. translation).Google Scholar
Briden, J. C. 1967. Preliminary palaeomagnetic results from the Adelaide System and Cambrian of South Australia. Trans. R. Soc. S. Aust. 91, 1725.Google Scholar
Briden, J. C. & Gass, I. G. 1974. Plate movement and continental magmatism. Nature, Lond. 248, 650–3.Google Scholar
Briden, J. C. & Irving, E. 1964. Palaeolatitude spectra of sedimentary palaeoclimatic indicators. In Nairn, A. E. M. (Ed.): Problems in Palaeoclimatology, 199224. Interscience, London.Google Scholar
Brückner, W. D. 1969. Geology of eastern part of Avalon Peninsula, Newfoundland – a summary. Mem. Am. Ass. Petrol. Geol. 12, 130–8.Google Scholar
Brückner, W. D. & Anderson, M. M. 1971. Late Precambrian glacial deposits in southeastern Newfoundland – a preliminary note. Proc. geol. Ass. Can. 24, 95102.Google Scholar
Caby, R. & Moussu, H. 1967. Une grande série détritique du Sahara: stratigraphie, paléogéographie et évolution structurale de la ≪série pourprée≫. dans l'Aseg'rad et le Tanezrouft oriental (Sahara algérien). Bull. Soc. géol. Fr. Sér. 7, 9, 876–82.Google Scholar
Cahen, L. 1970. Igneous activity and mineralisation episodes in the evolution of the Kibaride and Katangide Orogenic Belts of central Africa. In Clifford, T. N. & Gass, I. G. (Eds): African Magmatism and Tectonics, 97117. Oliver & Boyd, Edinburgh.Google Scholar
Cahen, L. & Lepersonne, J. 1967. The Precambrian of the Congo, Rwanda, and Burundi. In Rankama, K. (Ed.): The Precambrian, 3, 143290. Interscience, New York.Google Scholar
Cahen, L. & Snelling, N. J. 1966. The Geochronology of Equatorial Africa. 196 pp. North-Holland, Amsterdam.Google Scholar
Cameron, A. G. W. 1973. Major variations in solar activity? Rev. Geophys. Space Physics 11, 505–10.Google Scholar
Campana, B. 1958. The Mt. Lofty-Olary region and Kangaroo Island. In Glaessner, M. F. & Parkin, L. W. (Eds): The Geology of South Australia, J. geol. Soc. Aust. 5, 327.Google Scholar
Carey, S. W. 1947. Occurrence of tillite on King Island. Rep. 25th Meet. Aust. N.Z. Ass. Adv. Sci., 349. Government Printer, Adelaide.Google Scholar
Chumakov, N. M. 1968. Late Precambrian glaciation of Spitsbergen. Akad. Nauk SSSR Doklady 180, 115–18 (A.G.I. translation).Google Scholar
Chumakov, N. & Cailleux, A. 1971. Glaciation et éolisation dans l'est et le nord de l'Europe à l'éocambrien. Revue Géomorph. dyn. 20, 14.Google Scholar
Clauer, N. 1973. Utilisation de Ia méthode rubidium-strontium pour la datation des niveaux sédimentaires du Précambrien supérieur de l'Adrar mauritanien (Sahara occidental) et la mise en évidence de transformations précoces des minéraux argileux. Geochim. cosmochim. Acta 37, 2243–55.Google Scholar
Cloud, P. 1971. Precambrian of North America. Geotimes 16(3), 1318.Google Scholar
Cloud, P. 1973. Paleoecological significance of the banded iron-formation. Econ. Geol. 68, 1135–43.Google Scholar
Cloud, P. 1974. Evolution of ecosystems. Am. Scient. 62, 5666.Google Scholar
Compston, W. & Arriens, P. A. 1968. The Precambrian geochronology of Australia. Can. J. Earth Sci. 5, 561–83.Google Scholar
Crittenden, M. D., Schaeffer, F. E., Trimble, D. E. & Woodward, L. A. 1971. Nomenclature and correlation of some upper Precambrian and basal Cambrian sequences in western Utah and southeastern Idaho. Bull. geol. Soc. Am. 82, 581602.Google Scholar
Crittenden, M. D., Stewart, J. H. & Wallace, C. A. 1972. Regional correlation of upper Precambrian strata in western North America. 24th Int. geol. Congr. 1, 334–41.Google Scholar
Croll, James. 1875. Climate and Time. 577 pp. Daldy, Isbister & Co., London.Google Scholar
Daily, B. & Forbes, B. G. 1969. Notes on the Proterozoic and Cambrian, southern and central Flinders Ranges, South Australia. In Daily, B. (Ed): Geology Excursions Handbook, 2330. 41st Congr. Aust. N.Z. Ass. Adv. Sci., Adelaide.Google Scholar
Daily, B., Gostin, V. A. & Nelson, C. A. 1973. Tectonic origin for an assumed glacial pavement of late Proterozoic age, South Australia. J. geol. Soc. Aust., 20, 75–8.Google Scholar
Dalgarno, C. R. & Johnson, J. E. 1965. The Holowilena Ironstone, a Sturtian glacigene unit. Q. Geol. Notes geol. Surv. S. Aust. 13, 24.Google Scholar
Dangeard, L. 1964. Observations and reflections on the periglacial and glacial formations of the Upper Brioverian (Amorican Massif). In Nairn, A. E. M. (Ed.): Problems in Palaeoclimatology, 155–8. Interscience, London.Google Scholar
SirDavid, T. W. E. 1950. The Geology of the Commonwealth of Australia (edited by Browne, W. R.). Vol. 1, 747 pp. Edward Arnold, London.Google Scholar
Donaldson, J. A., McGlynn, J. C., Irving, E. & Park, J. K. 1973. Drift of the Canadian Shield. In Tarling, D. H. & Runcorn, S. K. (Eds): Implications of Continental Drift to the Earth Sciences 1, 317. Academic Press, London.Google Scholar
Dorr, J. Van N. 1973. Iron-formation in South America. Econ. Geol. 68, 1005–22.Google Scholar
Dow, D. B. & Gemuts, I. 1969. Geology of the Kimberley region, Western Australia: the East Kimberley. Bull. Bur. Miner. Resour. Geol. Geophys. Aust. 106, 135 pp.Google Scholar
Dunn, P. R., Thomson, B. P. & Rankama, K. 1971. Late Pre-Cambrian glaciation in Australia as a stratigraphic boundary. Nature, Lond. 231, 498502.Google Scholar
Embleton, B. J. J. & Giddings, J. W. 1974. Late Precambrian and lower Palaeozoic palaeomagnetic results from South Australia and Western Australia. Earth Planet. Sci. Lett. 22, 355–65.Google Scholar
Evans, P. 1971. Towards a Pleistocene time-scale. Spec. Publs geol. Soc. Lond. 5, 123356.Google Scholar
Fairbridge, R. W. 1969. Early Paleozoic south pole in northwest Africa. Bull. geol. Soc. Am. 80, 113–14.Google Scholar
Fairbridge, R. W. 1970. South pole reaches the Sahara. Science, N. Y. 168, 878–81.Google Scholar
Fairbridge, R. W. 1973. Glaciation and plate migration. In Tarling, D. H. & Runcorn, S. K. (Eds): Implications of Continental Drift to the Earth Sciences 1, 503–15. Academic Press, London.Google Scholar
Furduy, R. S. 1968. Upper Precambrian tillite of the Kolyma region. Akad. Nauk SSSR Doklady 180, 72–5 (A.G.I. translation).Google Scholar
Gabrielse, H. 1967. Tectonic evolution of the northern Canadian Cordillera. Can. J. Earth Sci. 4, 271—98.Google Scholar
Gabrielse, H. 1972. Younger Precambrian of the Canadian Cordillera. Am. J. Sci. 272, 521–36.Google Scholar
Germs, G. J. B. 1974. The Nama Group in South West Africa and its relationship to the Pan-African Geosyncline. J. Geol. 82, 301–17.Google Scholar
Girdler, R. W. 1964. The palaeomagnetic latitudes of possible ancient glaciations. In Nairn, A. E. M. (Ed.): Problems in Palaeoclimatology, 115–18. Interscience, London.Google Scholar
Gray, A. 1930. The correlation of the ore-bearing sediments of the Katanga and Rhodesian Copper Belt. Econ. Geol. 25, 783804.Google Scholar
Haller, J. 1971. Geology of the East Greenland Caledonides. 413 pp. Interscience, London.Google Scholar
Harland, W. B. 1964(a). Critical evidence for a great Infra-Cambrian glaciation. Geol. Rdsch. 54, 4561.Google Scholar
Harland, W. B. 1964(b). Evidence of late Precambrian glaciation and its significance. In Nairn, A. E. M. (Ed.): Problems in Palaeoclimatology, 119–49. Interscience, London.Google Scholar
Harland, W. B. 1969. Late Pre-Cambrian glaciation in Scotland: Discussion. Proc. geol. Soc. Lond. 1657, 182–3.Google Scholar
Harland, W. B. & Bidgood, D. E. T. 1959. Palaeomagnetism in some Norwegian sparagmites and the late Pre-Cambrian ice age. Nature, Lond. 184, 1860–2.Google Scholar
Harland, W. B. & Rudwick, M. J. S. 1964. The great Infra-Cambrian ice age. Scient. Am. 211 (2), 2836.Google Scholar
Harland, W. B., Smith, A. G. & Wilcock, B. (Eds) 1964. The Phanerozoic Time-Scale. 458 pp. Geol. Soc., London.Google Scholar
Harland, W. B. & Wilson, C. B. 1956. The Hecla Hoek succession in Ny Friesland, Spitsbergen. Geol. Mag. 93, 265–86.Google Scholar
Hartmann, W. K. 1972. Moons and Planets. 404 pp. Bogden & Quigley, Tarrytown-on-Hudson, New York.Google Scholar
Hatfield, W. C. 1937. The geology of the Solwezi district, Northern Rhodesia. Q. Jl geol. Soc. Lond. 93, 127–55.Google Scholar
Hughes, C. J. & Brückner, W. D. 1971. Late Precambrian rocks of eastern Avalon Peninsula, Newfoundland – a volcanic island complex. Can. J. Earth Sci. 8, 899915.Google Scholar
Irving, E. & Park, J. K. 1972. Hairpins and superintervals. Can. J. Earth Sci. 9, 1318–24.Google Scholar
Isotta, C. A. L., Rocha-Campos, A. C. & Yoshida, R. 1969. Striated pavement of the upper Precambrian glaciation in Brazil. Nature, Lond. 222, 466–8.Google Scholar
Jackson, G. C. A. 1932. The geology of the N'Changa district, Northern Rhodesia. Q. Jl geol. Soc. Lond. 88, 443515.Google Scholar
Jago, J. B. 1974. The origin of Cotton's Breccia, King Island, Tasmania. Trans. R. Soc. S. Aust. 98, 1328.Google Scholar
Johns, R. K. 1969. Mineral resources. In Parkin, L. W. (Ed.): Handbook of South Australian Geology, 234–61. Geol. Surv. South Australia, Adelaide.Google Scholar
Keller, B. M. 1973. Great glaciations in history of the Earth. Int. Geol. Rev. 15, 1067–74.Google Scholar
Keller, B. M., Korolev, V. G., Semikhatov, M. A. & Chumakov, N. M. 1968. The main features of the late Proterozoic paleogeography of the U.S.S.R. 23rd Int. geol. Congr. 4, 189202.Google Scholar
Korn, H. & Martin, H. 1951. Cyclic sedimentation in varved sediments of the Nama System in South-West Africa. Trans. geol. Soc. S. Africa 54, 65–7.Google Scholar
Kröner, A. 1973. Mixtite field excursion in South Africa, South West Africa and Angola, June 1973. Geol. Newsl. 1973, 286—90.Google Scholar
Kröner, A. 1974(a). The Gariep Group. Part 1: Late Precambrian formations in the Western Richtersveld, northern Cape Province. Chamber Mines Precambrian Res. Unit, Dept. Geol., Univ. Cape Town, Bull. 13, 115 pp.Google Scholar
Kröner, A. 1974(b). Chamber of Mines Precambrian Research Unit Tenth and Eleventh Annual Reports: 1972 and 1973. Dept. Geol., Univ. Cape Town, Cape Town.Google Scholar
Kröner, A. & Correia, H. 1973. Further evidence for glaciogenic origin of late Precambrian mixtites in Angola. Nature Phys. Sci., Lond. 246, 115–17.Google Scholar
Kröner, A. & Rankama, K. 1973. Late Precambrian glaciogenic sedimentary rocks in southern Africa: a compilation with definitions and correlations. Bull. geol. Soc. Finl. 45, 79102.Google Scholar
Leutwein, F. 1968. Contribution à la connaissance du précambrien récent en Europe Occidentale et développement géochronologique du Briovérien en Bretagne (France). Can. J. Earth Sci. 5, 673–82.Google Scholar
Llewellyn, P. G. 1969. Late Pre-Cambrian glaciation in Scotland: Discussion. Proc. geol. Soc. Lond. 1657, 194–7.Google Scholar
Martin, H. 1965. The Precambrian Geology of South West Africa and Namaqualand. 159 pp. Precambrian Res. Unit, Univ. Cape Town, Cape Town.Google Scholar
Mawson, D. 1949. The late Precambrian ice-age and glacial record of the Bibliando Dome. J. Proc. R. Soc. N.S.W. 82, 150–74.Google Scholar
McElhinny, M. W. 1973. Palaeomagnetism and Plate Tectonics. 358 pp. C.U.P., Cambridge.Google Scholar
McElhinny, M. W., Giddings, J. W. & Embleton, B. J. J. 1974. Palaeomagnetic results and late Precambrian glaciations. Nature, Lond. 248, 557–61.Google Scholar
Milankovitch, M. 1930. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. Handb. Klimatol. 1(A), 176 pp. Berlin.Google Scholar
Miller, A. A. 1961. Climatology (9th edn). 320 pp. Methuen, London.Google Scholar
Miller, F. K., McKee, E. H. & Yates, R. G. 1973. Age and correlation of the Winder-mere Group in northeastern Washington. Bull. geol. Soc. Am. 84, 3723–30.Google Scholar
Mirams, R. C. 1964. A Sturtian glacial pavement at Merinjina Well, near Wooltana. Q. Geol. Notes geol. Surv. S. Aust. 11, 46.Google Scholar
Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O'Leary, B., Strom, R. G., Suomi, V. & Trask, N. 1974. Mercury's surface: preliminary description and interpretation from Mariner 10 pictures. Science, N.Y. 185, 169–79.Google Scholar
Olson, W. S. 1966. Origin of the Cambrian–Precambrian unconformity. Am. Scient. 54, 458–64.Google Scholar
Peale, S. J. 1974. Possible histories of the obliquity of Mercury. Astr. J., N.Y. 79, 722–44.Google Scholar
Perry, W. J. & Roberts, H. G. 1968. Late Precambrian glaciated pavements in the Kimberley region, Western Australia. J. geol. Soc. Aust. 15, 51–6.Google Scholar
Piper, J. D. A. 1973. Latitudinal extent of late Precambrian glaciations. Nature, Lond. 244, 342–4.Google Scholar
Pringle, I. R. 1973. Rb-Sr age determinations on shales associated with the Varanger Ice Age. Geol. Mag. 109, 465–72.Google Scholar
Rankin, D. W. 1969. Late Precambrian glaciation in the Blue Ridge province of the southern Appalachian Mountains (abstr.). Spec. Pap. geol. Soc. Am. 121, 246.Google Scholar
Rankin, D. W. 1973. Late Precambrian and early Paleozoic paleogeography in western Virginia and North Carolina. Abstr. Progm. A. Meet. geol. Soc. Am. 5, 209.Google Scholar
Rankin, D. W., Stern, T. W., Reed, J. C. & Newell, M. F. 1969. Zircon ages of felsic volcanic rocks in the upper Precambrian of the Blue Ridge, Appalachian Mountains. Science, N.Y. 166, 741–4.Google Scholar
Reading, H. G. & Walker, R. G. 1966. Sedimentation of Eocambrian tillites and associated sediments in Finnmark, northern Norway. Palaeogeogr. Palaeoclim. Palaeoecol. 2, 177212.Google Scholar
Roberts, H. G., Gemuts, I. & Halligan, R. 1972. Adelaidean and Cambrian stratigraphy of the Mount Ramsay 1:250,000 Sheet area, Kimberley region, Western Australia. Rep. Bur. Miner. Resour. Geol. Geophys. Aust. 150, 67 pp.Google Scholar
Roberts, J. D. 1969. Late Pre-Cambrian glaciation in Scotland: Discussion. Proc. geol. Soc. Lond. 1657, 188–9.Google Scholar
Roberts, J. D. 1971. Late Precambrian glaciation: an anti-greenhouse effect. Nature, Lond. 234, 216–7.Google Scholar
Robertson, W. A. & Baragar, W. R. A. 1972. The petrology and paleomagnetism of the Coronation Sills. Can. J. Earth Sci. 9, 123–40.Google Scholar
Rochester, M. G. 1973. The Earth's rotation. EOS (Trans. Am. geophys. Un.) 54,769–81.Google Scholar
Sagan, C., Toon, O. B. & Gierasch, P. J. 1973. Climatic change on Mars. Science, N.Y. 181, 1045–9.Google Scholar
Saito, R. 1969. Glacier problems of late Pre-Cambrian eon. Kumamoto J. Sci. Ser. B, Sec. 1, 8, 744.Google Scholar
Salop, L. I. 1968. Pre-Cambrian of the U.S.S.R. 23rd Int. geol. Congr. 4, 6173.Google Scholar
Schermerhorn, L. J. G. 1974. Late Precambrian mixtites: glacial and/or nonglacial? Am. J. Sci. 274, 673824.Google Scholar
Siedlecka, A. & Roberts, D. 1972. A late Precambrian tilloid from Varangerhalvøya — evidence of both glaciation and subaqueous mass movement. Norges geol. Unders. Årbok 1972, 135–41.Google Scholar
Spencer, A. M. 1969. Late Pre-Cambrian glaciation in Scotland: Abstract and discussion. Proc. geol. Soc. Lond. 1657, 177–98.Google Scholar
Spencer, A. M. 1971. Late Pre-Cambrian glaciation in Scotland. Mem. geol. Soc. Lond. 6, 100 pp.Google Scholar
Spencer, A. M. & Spencer, M. O. 1972. The late Precambrian/Lower Cambrian Bonahaven Dolomite of Islay and its stromatolites. Scott. J. Geol. 8, 269–82.Google Scholar
Spjeldnaes, N. 1964. The Eocambrian glaciation in Norway. Geol. Rdsch. 54, 2445.Google Scholar
Steiner, J. & Grillmair, E. 1973. Possible galactic causes of periodic and episodic glaciations. Bull. geol. Soc. Am. 84, 1003–18.Google Scholar
Strand, T. & Kulling, O. 1972. Scandinavian Caledonides. 302 pp. Interscience, London.Google Scholar
Tarling, D. H. 1974. A palaeomagnetic study of Eocambrian tillites in Scotland. J. geol. Soc. Lond. 130, 163–77.Google Scholar
Thomson, B. P. 1969. Precambrian basement cover: the Adelaide System. In Parkin, L. W. (Ed.): Handbook of South Australian Geology, 4983. Geol. Surv. South Australia, Adelaide.Google Scholar
Thomson, J. 1871. On the occurrence of pebbles and boulders of granite in schistose rocks in Islay, Scotland. Rep. 40th Meet. British Ass. Adv. Sci. 88. John Murray London.Google Scholar
Trendall, A. F. 1972. Revolution in Earth history. J. geol. Soc. Aust. 19, 287311.Google Scholar
Trendall, A. F. 1973(a). Precambrian iron-formations of Australia. Econ. Geol. 68, 1023–34.Google Scholar
Trendall, A. F. 1973(b). Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersley Group, Western Australia. Econ. Geol. 68, 1089–97.Google Scholar
Trendall, A. F. & Blockley, J. G. 1970. The iron formations of the Precambrian Hamersley Group, Western Australia. Bull. geol. Surv. West. Aust. 119, 366 pp.Google Scholar
van Woerkom, A. J. J. 1953. The astronomical theory of climatic changes. In Shapley, H. (Ed.): Climatic Change. Evidence, Causes, and Effects, 147–57. Harvard Univ. Press, Cambridge, Mass.Google Scholar
Ward, W. R. 1973. Large-scale variations in the obliquity of Mars. Science, N.Y. 181, 260–2.Google Scholar
Wells, A. T., Forman, D. J., Ranford, L. C. & Cook, P. J. 1970. Geology of the Amadeus Basin, central Australia. Bull. Bur. Miner. Resour. Geol. Geophys. Aust. 100, 222 pp.Google Scholar
White, B. 1973. Precambrian peritidal carbonate sedimentation. Abstr. Progm. A. Meet. geol. Soc. Am. 5, 237.Google Scholar
Whitten, G. F. 1966. Suggested correlation of iron ore deposits within South Australia. Q. Geol. Notes geol. Surv. S. Aust. 18, 711.Google Scholar
Whitten, G. F. 1970. The investigation and exploitation of the Razorback Ridge iron deposit. Rep. Invest. geol. Surv. S. Aust. 33, 165 pp.Google Scholar
Williams, G. E. 1972. Geological evidence relating to the origin and secular rotation of the solar system. Mod. Geol. 3, 165–81.Google Scholar
Williams, G. E. 1973. Geotectonic cycles, lunar evolution, and the dynamics of the Earth—Moon system. Mod. Geol. 4, 159–83.Google Scholar
Williams, G. E. 1974. Discussion of late Precambrian glacial climate and the Earth's obliquity. J. geol. Soc. Lond. 130, 599601.Google Scholar
Williams, G. E. (in the press). Possible relation between periodic glaciation and the flexure of the Galaxy. Earth Planet. Sci Lett.Google Scholar
Wilson, C. B. & Harland, W. B. 1964. The Polarisbreen Series and other evidences of late Pre-Cambrian ice ages in Spitsbergen. Geol. Mag. 101, 198219.Google Scholar
Wilson, R. C. L. 1969. Late Pre-Cambrian glaciation in Scotland: Discussion. Proc. geol. Soc. Lond. 1657, 194.Google Scholar
Wolfe, J. A. 1969. Paleogene floras from the Gulf of Alaska region. Open File Rep. U.S. geol. Surv. 374, 114 pp.Google Scholar
Woodward, H. 1876. The President's address. Proc. Geol. Ass. 4, 134.Google Scholar
Young, G. M. 1972. UNESCO/IUGS Field Trip and Symposium on Precambrian glaciogenic sedimentary rocks, November 3–9, 1971. Geol. Newsl. 1972 (1), 1416.Google Scholar