Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T14:39:54.181Z Has data issue: false hasContentIssue false

Mutagenic action of nitrous acid on Aspergillus nidulans

Published online by Cambridge University Press:  14 April 2009

O. H. Siddiqi
Affiliation:
Department of Genetics, The University, Glasgow
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nitrous acid is shown to be a potent killing and mutagenic agent for Aspergillus nidulans. The kinetics of mutation rates induced by nitrous acid are investigated by means of three phenotypically distinguishable suppressors of methionine requirement. The dose-effect curves for two of the suppressors are non-linear. Among w and y mutants produced by nitrous acid there is a high proportion of sectored mutants. Double screening experiments indicate that at least some of the sectored mutations may be due to the presence of more than one genetic strand at the time of treatment. Two of the suppressor genes respond differentially to nitrous acid treatment.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1962

References

REFERENCES

Auerbach, C. (1951). Induction of changes in genes and chromosomes. Cold Spr. Harb. Symp. quant. Biol. 16, 199213.CrossRefGoogle Scholar
Auerbach, C. & Woolf, B. (1960). Alpha and beta loci in Drosphila. Genetics, 45, 16911703.CrossRefGoogle Scholar
Benzer, S. (1961). On the topography of the genetic fine structure. Proc. nat. Acad. Sci., Wash., 47, 403415.Google Scholar
Benzer, S.(1961). Genetic fine structure. Harvey Lectures, 56, pp.121. New York: Academic Press Inc.Google Scholar
Demerec, M. (1954). Genetic action of mutagens. Caryologia (Suppl.), 6, 201217.Google Scholar
Fahmy, O. G. & Fahmy, M. J. (1956). Cytogenetic analysis of the action of carcinogens and tumour inhibitors In Drosophila melanogaster, V. Differential genetic response to the alkylating mutagens and X-radiation. J. Genet. 54, 146164.Google Scholar
Fahmy, O. G. & Fahmy, M. J. (1957). Further evidence for the differential effect of mutagens in Drosophila melanogaster. J. Genet. 55, 280287.Google Scholar
Fahmy, O. G. & Fahmy, M. J. (1959). Differential gene response to mutagens In Drosophila melanogaster. Genetics, 4a, 11491171.CrossRefGoogle Scholar
Freese, E. (1959). On the molecular explanation of spontaneous and induced mutations. Brookhaven Symposia in Biology, 12, 6375.Google Scholar
Gierker, A. & Mundry, K. W. (1958). Production of mutants of tobaceo mosaic virus by chemical alteration of its ribonucleic acid in vitro. Nature, Lond., 182, 14571458.Google Scholar
Gustafsson, A. & Mackey, J. (1948). The genetical effect of mustard gas substances and neutrons. Hereditas, Lund, 34, 371386.Google Scholar
Heslot, H. (1960). Schizosaccharomyces pombe; un nouvel organisme pour l'étude de la mutagénèse chimique. Dtsch. Akad. Wies., Jahrgang 1960, 98105. Berlin: Akademie Verlag.Google Scholar
Jensen, K. A., Kirk, I., Kölmark, G. & Westergaard, M. (1951). Chemically induced mutations in Neurospora. Cold Spr. Harb. Symp. quant. Biol. 16, 245261.Google Scholar
Kaudewitz, F. (1959). Production of bacterial mutants with nitrous acid. Nature, Lond., 183, 18291830.CrossRefGoogle ScholarPubMed
Kaudewitz, F. (1959 b). Inaktivierende und mutagene Wirkung saltpetriger Säure auf zellen von Escherichia coli. Z. Naturf. 14, 528537.CrossRefGoogle Scholar
Kölmark, G. (1953). Differential response to mutagens as studied by Neurospora reverse mutation test. Hereditas, Lund, 39, 270.Google Scholar
Kölmark, G. & Westergaard, M. (1953). Further studies on chemically induced reversions at the adenine locus of Neurospora. Hereditas, Lund, 39, 204224.Google Scholar
Litman, R. & Ephrussi-Taylor, H. (1959). Inactivation et mutation de facteurs genetique de l'acide desoxiribonucleique du pneumocoque par l'ultraviolet et par l'acide nitreuse. C. R. Acad. Sci., Paris, 249, 838840.Google Scholar
Malling, H., Miltenburger, H., Westergaard, M. & Zimmer, K. G. (1959). Differential response of a double mutant—adenineless, inositolless—in Neurospora to combined treatment with ultraviolet radiation and chemicate. Int. J. Rad. Biol. 1, 328343.Google Scholar
Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. & Bufton, A. W. J. (1953). The genetics of Aspergillus nidulans. Advanc. Genet. 5, 141238.Google Scholar
Pratt, D. & Stent, G. S. (1959). Mutational heterozygotes in bacteriophage. Proc. nat. Acad. Sci., Wash., 45, 15071515.CrossRefGoogle Scholar
Roberts, C. F. (1959). A replica plating technique for the isolation of nutritionally exacting mutants of a filamentous fungus (Aspergillus nidulans). J. gen. Microbiol. 20, 540548.CrossRefGoogle ScholarPubMed
Schuster, H. & Schramm, G. (1958). Bestimmung der biologisch wichtigen Einheit der Ribosenukleinsäure des TMV auf chemischen Wege. Z. Naturf. 13b, 697704.CrossRefGoogle Scholar
Steinberg, R. A. & Thom, C. (1940 a). Chemical induction of genetic changes in Aspergilli. J. Hered. 31, 6163.CrossRefGoogle Scholar
Steinberg, R. A. & Thom, C. (1940 b). Mutations and reversions in reproductivity of Aspergilli with nitrite, cochicine and D-lysine. Proc. nat. Acad. Sci., Wash., 26, 363366.CrossRefGoogle Scholar
Stern, C. (1957). A note on the detection of differential effect on mutagens. J. Genet. 55, 276279.Google Scholar
Tessman, I. (1959). Mutagenesis in phages φ x 174 and T4 and properties of the genetic material. Virology, 9, 375385.Google Scholar
Vielmetter, W. & Wieder, C. M. (1959). Mutagene und inaktivierende Wirkung saltpetriger Säure auf freie Partikel des Phagen T.2. Z. Naturf. 14b, 312317.CrossRefGoogle Scholar
Westergaard, M. (1960). in A discussion of mutagenic specificity: 1. Specificity on the geographical level. Dtsch. Akad. Wiss., Jahrgang 1960, Nr. 1. Berlin: Akademie Verlag.Google Scholar
Witkin, E. M. (1951). Nuclear segregation and the delayed appearance of induced mutants in Escherichia coli. Cold Spr. Harb. Symp. quant. Biol. 16, 357372.Google Scholar