Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-27T00:46:39.347Z Has data issue: false hasContentIssue false

Petrology and geochemistry of volcanic rocks of the Cerro Galan caldera, northwest Argentina

Published online by Cambridge University Press:  01 May 2009

P. W. Francis
Affiliation:
Lunar and Planetary Institute, 3303 NASA Road One, Houston, Texas, 77058, U.S.A.
R. S. J. Sparks
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.
C. J. Hawkesworth
Affiliation:
Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, U.K.
R. S. Thorpe
Affiliation:
Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, U.K.
D. M. Pyle
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.
S. R. Tait
Affiliation:
Institut de Physique du Globe, 4, Place Jussieu, Universite de Paris 6 et 7, Paris, France
M. S. Mantovani
Affiliation:
Instituto Astronomico e Geofisico, U. de Sao Paulo, Av. Miguel Stefano 4200, Caixa Postal 30627, 01051 Sao Paulo SP, Brazil
F. McDermott
Affiliation:
Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA, U.K.

Abstract

At least 2000 km3 of relatively uniform dacitic magma have been erupted from the Cerro Galan caldera complex, northwest Argentina. Between 7 and 4 Ma ago several composite volcanoes predominantly of dacitic lava were constructed, and several large high-K dacitic ignimbrites were erupted. 2.2 Ma ago the > 1000km3 Cerro Galan ignimbrite was erupted. The predominant mineral assemblage in the ignimbrites is plagioclase-biotite-quartz-magnetite-ilmenite; the Cerro Galan ignimbrite also contains sanidine. Fe-Ti oxide minerals in the Cerro Galan ignimbrite imply temperatures of 801–816 °C. Plagioclase phenocrysts in the ignimbrites typically have rather homogeneous cores surrounded by complex, often oscillatory zoned, rims. Core compositions show a marked bimodality, with one population consisting of calcic cores surrounded by normally zoned rims, and a second of sodic cores surrounded by reversely zoned rims. The older ignimbrites do not show systematic compositional zonation, but the Cerro Galan ignimbrite exhibits small variations in major elements (66–69% SiO2) and significant variations in Rb, Sr, Ba, Th and other trace elements, consistent with derivation from a weakly zoned magma chamber, in which limited fractional crystallization occurred. The ignimbrites have 87Sr/86Sr = 0.7108–0.7181; 143Nd/144Nd = 0.51215–0.51225, and δ18O = + 10 to + 12.5, consistent with a significant component of relatively non-radiogenic crust with high Rb/Sr and enriched in incompatible elements. Nd model ages for the source region are about 1.24 Ga. 87Sr/86Sr measurements of separated plagioclases indicate that Anrich cores have slightly lower 87Sr/86Sr than less calcic plagioclases, suggesting a small degree of isotopic heterogeniety in different components within the magmas. Pb isotope data for plagioclase show restricted ranges (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb = 18.87–18.92, 15.65–15.69 and 39.06–39.16 respectively), and suggest derivation from Proterozoic crustal material(> 1.5 Ga).

Contemporaneous satellite scoria cones and lavas are high-K basalts, basaltic andesites and andesites with SiO2 = 51–57%; K2O = 2–3% and normative plagioclase compositions of An37–48, and may be derived from a mantle source containing both ‘subduction zone’ and ‘within plate’ components. 87Sr/86Sr ranges from 0.7055 to 0.7094 and 143Nd/144Nd from 0.51250 to 0.51290. Variation diagrams such as MgO: SiO2 show two trends, one indicating closed system fractional crystallization and the other crustal contamination. AFC modelling of the open system rocks indicates a parental mantle-derived mafic magma which is itself enriched in K, Rb, Ba, U, Ta/Sm, Ta/Th and Sr, and has 87Sr/86Sr = 0.705–0.706, while the contaminant need not be more radiogenic than the dacitic ignimbrites.

The Cerro Galan dacitic magmas are interpreted in terms of a deep and uniform region of the central Andean continental crust repeatedly melted by emplacement of incompatible-element-enriched, mantle-derived mafic magmas, a proportion of which may also have mixed with the dacite magmas. A component of the crustal material had a Proterozoic age. The magmas derived by crustal melting were also enriched in incompatible elements either by crystal/liquid fractionation processes, or by metasomatism of their source regions just prior to magma generation. Much of the crystallization took place in the source region during the melting process or in mid-crustal magma chambers. The magmas may have re-equilibrated at shallow levels prior to eruption, but only limited compositional zonation developed in high-level magma chambers.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acenolaza, F. G., Toselli, A. J. & Gonzalez, O. 1976. Geologia de la region comprendida entre el Salar del Hombre Muerto y Antofagasta de la Sierra, Provincia de Catamarca. Revista Association Geologica de Argentina 31, 127315.Google Scholar
Allmendinger, R. W., Eremchuk, J. E., Sosa, Gomez J., Ojeda, J. & Francis, P. W. (in press) The Pasto Ventura pull-apart and the southward collapse of the southern puna plateau. Journal of Latin American Earth Sciences (in press).Google Scholar
Andersen, D. & Lindsley, S. 1985. New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. EOS Transactions, American Geophysical Union 66, 18.Google Scholar
Bacon, C. R. & Metz, J. 1984. Magmatic inclusions in rhyolites, contaminated basalts and compositional zonation beneath the Coso Volcanic Field, California. Contributions to Mineralogy and Petrology 85, 346–65.CrossRefGoogle Scholar
Brown, M. L. & Parsons, I. 1981. Towards a more practical two-feldspar geothermometer. Contributions to Mineralogy and Petrology 76, 369–77.CrossRefGoogle Scholar
Christiansen, R. L. 1983. Yellowstone magmatic evolution; Its bearing on understanding large volume explosive volcanism. In Explosive Volcanism (ed. Boyd, F.R.), pp. 8495. U.S. National Academy of Sciences.Google Scholar
DePaolo, D. J. 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters 53, 189202.CrossRefGoogle Scholar
Deruelle, B. 1982. Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. Journal of Volcanology and Geothermal Research 14, 7124.CrossRefGoogle Scholar
Deruelle, B., Harmon, R. S. & Moorbath, S. 1983. Combined Sr-O isotope relationships and petrogenesis of Andean volcanic rocks of South America. Nature 302, 814–16.CrossRefGoogle Scholar
Dunbar, N. W., Kyle, P. R. & Wilson, C. J. N. 1989. Evidence for limited zonation in silicic magma systems, Taupo volcanic zone, New Zealand. Geology 17, 234–6.2.3.CO;2>CrossRefGoogle Scholar
Francis, P. W., O'Callaghan, L. J., Kretschmar, G. A., Thorpe, R. S., Sparks, R. S. J., Page, R. N., de Barrio, R. E., Gillou, G. & Gonzalez, O. E. 1983. The Cerro Galan ignimbrite. Nature 301, 51–3.CrossRefGoogle Scholar
Francis, P. W., Thorpe, R. S., Moorbath, S., Kretschmar, G. A. & Hammill, M. 1980. Strontium isotope evidence for crustal contamination of calc-alkaline volcanic rocks from Cerro Galan, north-west Argentina. Earth and Planetary Science Letters 48, 257–67.CrossRefGoogle Scholar
Grunder, A. L. & Boden, D. R. 1987. Comment on '…Magmatic Conditions of the Fish Canyon Tuff, Central San Juan Volcanic Field, Colorado' by Whitney and Stormer, 1985. Journal of Petrology 28, 737–46.CrossRefGoogle Scholar
Halpern, M. & Latorre, C. O. 1973. Estudio geochronologico inicial de rocas del Noroeste Argentino. Revista Association Geologica de Argentina 28, 195205.Google Scholar
Harmon, R. S., Thorpe, R. S. & Francis, P. W. 1981. Petrogenesis of Andean andesites from combined Sr-O isotope relationships. Nature 290, 396–99.CrossRefGoogle Scholar
Hawkesworth, C. J., Hammill, M., Gledhill, A. R., van Calsteren, P. & Rogers, G. 1982. Isotope and trace element evidence for late stage intra-crustal melting in the high Andes. Earth and Planetary Science Letters 58, 240–54.CrossRefGoogle Scholar
Hawkesworth, C. J. & Ellam, R. 1989. Chemical fluxes and wedge replenishment rates along recent destructive plate margins. Geology 17, 46–9.2.3.CO;2>CrossRefGoogle Scholar
Hildreth, W. 1979. The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers. In Ash Flow Tuffs (ed. Chapin, C. E., Elston, W. E.); pp. 4376. Geological Society of America Special Paper no. 180.CrossRefGoogle Scholar
Hildreth, W. 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. Journal of Geophysical Research 86, 10153–92.CrossRefGoogle Scholar
Hildreth, W. & Moorbath, S. 1988. Crustal contribution to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 98, 455–89.CrossRefGoogle Scholar
Hormann, P. K., Pichler, H. & Zeil, W. 1978. New data on the young volcanism in the Puna of NW Argentina. Geologische Rundschau 62, 397418.CrossRefGoogle Scholar
Huppert, H. E. & Sparks, R. S. J. 1988 a. The generation of granitic melts by intrusion of basalt into continental crust. Journal of Petrology 29, 599624.CrossRefGoogle Scholar
Huppert, H. E. & Sparks, R. S. J. 1988 b. Melting the roof of a chamber containing hot, turbulently convecting fluid. Journal of Fluid Mechanics 188, 107–31.CrossRefGoogle Scholar
Jordan, T. E. & Alonso, R. N. 1987. Cenozoic stratigraphy and basin tectonics of the Andes mountains, 20°–28° south latitude. American Association of Petroleum Geologists Bulletin 71, 4964.Google Scholar
Jordan, T. E., Isacks, B. L., Allmendinger, R. W., Brewer, J. A., Ramos, V. A. & Ando, C. J. 1983. Andean tectonics related to geometry of the subducted Nazca plate. Geological society of America Bulletin 94, 341–61.2.0.CO;2>CrossRefGoogle Scholar
Klerkx, J., Deutsch, S., Pichler, H. & Zeil, W. 1977. Strontium isotopic composition and trace element data bearing on the origin of Cenozoic volcanic rocks of the central and southern Andes. Journal of Volcanology and Geothermal Research 2, 4971.CrossRefGoogle Scholar
Lipman, P. W. 1971. Iron-titanium oxide phenocrysts in compositionally zoned ash flow sheets from southern Nevada. Journal of Geology 79, 438–56.CrossRefGoogle Scholar
Mantovani, M. S. M. & Hawkesworth, C. J. (in press) An inversion approach to assimilation and fractional crystallisation processes. Contributions to Mineralogy and Petrology.Google Scholar
Marsh, B. D. 1981. On the crystallinity, probability of occurrence and rheology of lava and magma. Contributions to Mineralogy and Petrology 78, 8598.CrossRefGoogle Scholar
Miller, C. F. & Mittlefehldt, D. W. 1984. Extreme fractionation in felsic magma chambers: a product of liquid state diffusion or fractional crystallisation? Earth and Planetary Science Letters 61, 151–8.CrossRefGoogle Scholar
Musselwhite, D. S., DePaolo, D. J. & McCurry, M. 1989. The evolution of a silicic magma system: isotopic and chemical evidence from the Woods Mountain Volcanic Center, eastern California. Contributions to Mineralogy and Petrology 101, 1929.CrossRefGoogle Scholar
Myers, J. S. 1975. Cauldron subsidence and fluidization: mechanisms of intrusion of the coastal batholith of Peru into its own volcanic ejecta. Geological Society of America Bulletin 86, 1209–20.2.0.CO;2>CrossRefGoogle Scholar
Noble, D. C., Vogel, T. A., Peterson, P. S., Landis, G. P., Grant, N. K., Jezek, P. A. & McKee, E. H. 1984. Rare element enriched, S-type ash flow tuffs containing phenocrysts of muscovite, andalusite and sillimanite, southeastern Peru. Geology 12, 35–9.2.0.CO;2>CrossRefGoogle Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.CrossRefGoogle Scholar
Peccerillo, A. & Taylor, S. R. 1975. Geochemistry of Upper Cretaceous volcanic rocks from the Pontic chain, northern Turkey. Bulletin of Volcanology 39, 557–69.CrossRefGoogle Scholar
Pichavant, M., Kontak, D. J., Herrera, J. V. & Clark, A. H. 1988 a. The Miocene-Pliocene Macusani volcanics, S.E. Peru. I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contributions to Mineralogy and Petrology 100, 300–24.CrossRefGoogle Scholar
Pichavant, M., Kontak, D. J., Herrera, J. V. & Clark, A. H. 1988 b. The Miocene-Pliocene Macusani volcanics, S.E. Peru. II. Geochemistry and origin of a felsic peraluminous magma. Contributions to Mineralogy and Petrology 100, 325–38.CrossRefGoogle Scholar
Pitcher, W. S., Atherton, M. P., Cobbing, E. J. & Beckinsale, P. D. (eds) 1985. Magmatism at a Plate's Edge: the Peruvian Andes. London; Blackie. 328 pp.CrossRefGoogle Scholar
Rapela, C. W., Hearman, L. M. & McNutt, R. H. 1982. Rb–Sr geochronology of granitoid rocks from the Pampean ranges, Argentina. Journal of Geology 90, 574–82.CrossRefGoogle Scholar
Rogers, G. & Hawkesworth, C. J. 1989. A geochemical traverse across the north Chilean Andes: evidence for crustal generation from the mantle wedge. Earth and Planetary Science Letters 91, 271–85.CrossRefGoogle Scholar
Rudnick, R. L., McDonough, W. F., McCulloch, M. T. & Taylor, S. R. 1986. Lower crustal xenoliths from Queensland, Australia: Evidence for deep crustal assimilation and fractionation of continental basalts. Geochimica et Cosmochimica Acta 50, 1099–115.CrossRefGoogle Scholar
Schwab, K. 1973. Die stratigraphie in der Umgebung des Salar de Cauchari (NW-Argentinien). Geotektonische Forschungen 43, 1168.Google Scholar
Schwab, K. & Lippolt, H. J. 1974. K-Ar mineral ages and late Cenozoic history of the Salar de Cauchari area, Argentine puna. I.A.V.C.E.I. Proceedings, Symposium on Andean and Antarctic Volcanology Problems (Santiago, Chile), 701–2.Google Scholar
Smith, R. L. 1979. Ash flow magmatism. In Ash Flow Tuffs (ed. Chapin, C. E., Elston, W. E.) pp. 528. Geological Society of America Special Paper no. 180.CrossRefGoogle Scholar
Sparks, R. S. J., Francis, P. W., Hamer, R. D., Pankhurst, R. J., O'Callaghan, L. O., Thorpe, R. S. & Page, R. N. 1985. Ignimbrites of the Cerro Galan caldera, NW Argentina. Journal of Volcanology and Geothermal Research 24, 205–48.CrossRefGoogle Scholar
Spencer, K. J. & Lindsley, D. H. 1981. A solution model for co-existing iron-titanium oxides. American Mineralogist 66, 1189–201.Google Scholar
Stacey, J. S. & Kramers, S. D. 1975. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Stormer, J. C. 1983. The effects of re-calculation on estimates of temperature and oxygen fugacity from analyses of multi-component iron-titanium oxides. American Mineralogist 68, 586–94.Google Scholar
Stormer, J. C. & Whitney, J. A. 1985. Two feldspar and iron-titanium oxide equilibria in silicic magmas and the depth of origin of large volume ash flow tuffs. American Mineralogist 70, 5264.Google Scholar
Stormer, J. C., Whitney, J. A. & Dorais, M. 1987. Reply to a comment on ‘Magmatic conditions of the Fish Canyon Tuff…’ Journal of Petrology 28, 747–54.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust, Its Composition and Evolution. Oxford: Blackwell Scientific. 321 pp.Google Scholar
Thorpe, R. S., Francis, P. W. & Harmon, S. 1981. Andean andesites and crustal growth. Philosophical Transactions of the Royal Society, Series A, 301, 305–20.Google Scholar
Thorpe, R. S., Francis, P. W. & Moorbath, S. 1979. Rare earth element and strontium isotope evidence concerning the petrogenesis of north Chilean ignimbrites. Earth and Planetary Science Letters 42, 359–67.CrossRefGoogle Scholar
Thorpe, R. S., Francis, P. W. & O'Callaghan, L. J. 1984. Relative roles of source contamination, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philosophical Transactions of the Royal Society, Series A, 310, 673–92.Google Scholar
Turner, J. C. M. 1972. Cordillera Oriental. In Geologia Regional Argentina (ed. Leanza, A. F.), pp. 117–42. Cordoba: Academia Nacional de Ciencias.Google Scholar
Whitney, J. A. & Stormer, J. C. 1985. Mineralogy, petrology and magmatic conditions from the Fish Canyon Tuff, Central San Juan volcanic field, Colorado. Journal of Petrology 26, 726–62.CrossRefGoogle Scholar
Whitney, J. A. & Stormer, J. C. 1986. Model for the intrusion of batholiths associated with the eruption of large volume ash-flow tuffs. Science 231, 483–5.CrossRefGoogle ScholarPubMed
Wyborn, D. & Chappell, B. W. 1986. The petrogenetic significance of chemically related plutonic and volcanic rock units. Geological Magazine 123, 619–28.CrossRefGoogle Scholar