Journal of the Marine Biological Association of the United Kingdom

Research Article

Structure, strength and seasonality of the slope currents in the Bay of Biscay region

R. D. Pingreea1 and B. Le Canna2

a1 Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB

a2 U.A. 710 CNRS IFREMER, Centre de Brest, B.P. 70 29263 Plouzané, France

Slope currents in the Bay of Biscay show a consistent poleward transport but seasonal trends and vertical current structure appear more variable. Indeed more long term records are required to establish seasonal trends firmly.

In the south of the region (Spanish slopes, mooring 118), the upper-slope (water depth 1005 m) flow exhibited a strong vertical structure with the maximum surface inflow occurring in the winter period, and this effect may be wind induced. Satellite imagery shows that this flow originates from the Iberian slope and that a decreasing along-slope surface transport occurs along the north Spanish slopes at this time of year.

In the north of the region (Porcupine Seabight slopes) vertical structure was again evident in the upper slope (~1000–m depth) flow. At mooring 114 the flow at mid–depth showed a weakening along-slope flow and an on-slope tendency in the March/April period; a complete reversal in the slope current occurred at mid–depths at the position of mooring 112 during March.

In the central region (Celtic and -Armorican slopes) seasonal variations in the upper layers on the slopes were also present. In this region, the upper–slope transport (2500m depth) reached maximum values of 3–5 Sv in late summer. Upper flows at the rise (mooring 8002) were directed on-slope during the period of maximum upper–slope transport but changed direction in the March/April period.

In this region on the Celtic shelf (DB1), the surface flow is in a counter–current sense and wind-induced and so the seasonal variations here reflect seasonality in the wind stress.