Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-09T12:18:11.189Z Has data issue: false hasContentIssue false

Osmoregulation in some palaemonid prawns

Published online by Cambridge University Press:  11 May 2009

N. Kesava Panikkar
Affiliation:
From the Department of Zoology and Comparative Anatomy, University College, London, and the Marine Biological Laboratory, Plymouth

Extract

1. The brackish-water prawn Palaemonetes varians and the marine prawns Leander serratus and L. squilla are hypotonic in normal sea water, the blood of these species showing osmotic pressures equivalent to 2·3, 2·8 and 2·6 % NaCl respectively, in an external medium of 3·5 % NaCl.

2. Palaemonetes varians is isotonic in water of about 2·0 % NaCl and the species is practically homoiosmotic, the difference in its osmotic pressure over a range of 5·0 % NaCl in the external medium being only 0·8–1·0 %. The species has a very wide range of tolerance from water that is nearly fresh to concentrated sea water equivalent to 5·2 % NaCl.

3. Leander serratus is much less homoiosmotic than Palaemonetes, and has a limited tolerance to dilution and concentration of the environment. Homoiosmoticity is maintained up to a dilution of 2·5 % in the external medium when isotonicity is reached; but in lower dilutions there is a steady decline in osmotic pressure and the regulatory mechanism evidently breaks down.

4. The osmotic behaviour of Leander squilla is very similar to that of L. serratus, but the homoiosmotic behaviour is more marked and it has greater tolerance to dilution of the environment.

5. When Leander and Palaemonetes are transferred to very dilute sea water, the internal osmotic pressure falls gradually for about 14–24 hr., varying according to the size of the individual. After the lowest value has been registered there is a slight rise, and a steady state is thereafter maintained.

6. Studies on the changes of weight of prawns when transferred to diluted media indicate that the integument (gills) is permeable to water and that, at least in Leander serratus, the amount of water entering is mainly responsible for the dilution of the blood. There is a similar fall in weight when prawns are transferred to concentrated media, due to loss of water.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1941

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, E. J., 1892 a. On the minute structure of the gills of Palaemonetes varians. Quart. J. Micr. Sci., Vol. XXXIV, pp. 7584.Google Scholar
Allen, E. J. 1892 b. Nephridia and body cavity of some decapod Crustacea. Quart. J. Micr. Sci., Vol. XXXIV, pp. 403–26.Google Scholar
Atkins, W. R. G., 1922. The hydrogen-ion concentration of sea water in its biological relations. J. Mar. Biol. Assoc., Vol. XII, pp. 717–69.CrossRefGoogle Scholar
Baldes, E. J., 1934. A micro-method of measuring osmotic pressure. J. Sci. Instr., Vol. XI, pp. 223–5.CrossRefGoogle Scholar
Baldwin, E., 1937. Introduction to Comparative Biochemistry. Cambridge.CrossRefGoogle Scholar
Bateman, J. B., 1933. Osmotic and ionic regulation in the shore crab Carcinus maenas with notes on the blood concentrations of Gammarus locusta and Ligia oceanica. J. Exp. Biol., Vol. X, pp. 355–71.CrossRefGoogle Scholar
Baumberger, J. P. & Dill, D. B., 1928. A study of the glycogen and sugar content and the osmotic pressure of crabs during the moult cycle. Physiol. Zoöl., Vol. 1, PP. 545–9.CrossRefGoogle Scholar
Baumberger, J. P. & Olmsted, J. M. D., 1928. Changes in the osmotic pressure and water content of crabs during the moult cycle. Physiol. Zoöl., Vol. I, pp. 531–44.CrossRefGoogle Scholar
Beadle, L. C., 1939. Regulation of the haemolymph in the saline water mosquito larva of Aedes detritus Edw. J. Bxp. Biol., Vol. XVI, pp. 346–62.CrossRefGoogle Scholar
Beadle, L. C. & Cragg, J. B., 1940 a. Studies on adaptation to salinity in Gammarus spp. I. J. Exp. Biol., Vol. XVII, pp. 437–44.Google Scholar
Beadle, L. C. & Cragg, J. B., 1940 b. Osmotic regulation in fresh-water animals. Nature, Lond., Vol. CXLVI, p. 588.CrossRefGoogle Scholar
Bethe, A., 1929. Ionendurchlässigkeit der Körperoberfläche von wirbellosen Tieren des Meeres als Ursache der Giftigkeit von Seewasser abnormer Zusammensetzung. Pflüger's Arch., Vol. CCXXI, pp. 344–62.CrossRefGoogle Scholar
Bethe, A., 1930. The permeability of the surface of marine animals. J. Gen. Physiol., Vol. XIII, pp. 437–44.CrossRefGoogle Scholar
Bethe, A. & Berger, E., 1931. Variation im Mineralbestand verschiedener Blutarten. Pflüger's Arch., Vol. CCXXVII, pp. 571–84.CrossRefGoogle Scholar
Boas, J. E. V., 1898. Kleinere carcinologische Mittheilungen. (2) Über den ungleichen Entwicklungsgang der Salzwasser, und der Süsswasserform von Palaemonetes varians. Zool. Jahrb., Abt. Syst., Jena, Vol. IV, pp. 793804.Google Scholar
Bottazzi, F., 1897. La pression osmotique du sang des animaux marins. Arch. Ital. Biol., Vol. XXVIII, pp. 6172.Google Scholar
Bottazzi, F., 1908. Osmotischer Druck und elektrische Leitfähigkeit der Flüssigkeiten der einzelligen pflanzlichen und tierischen Organismen. Ergebn. Physiol., Vol. VII, pp. 161402.CrossRefGoogle Scholar
Claus, , Arnold, , 1937. Vergleichend-physiologische Untersuchungen zur Ökologie der Wasserwanzen mit besonderer Berücksichtigung der Brackwasserwanze Sigara lugubris Fieb. Zool.Jahrb., Abt. Allg. Zool., Jena, Vol. LVIII, pp. 365432.Google Scholar
Conklin, R. E. & Krogh, A., 1938. A note on the osmotic behaviour of Eriocheir in concentrated, and Mytilus in dilute sea water. Z. Vergl. Physiol., Vol. XXVI, pp. 239–41.Google Scholar
Cooper, L. H. N., 1932. On the effect of long-continued additions of lime to aquarium sea water. J. Mar. Biol. Assoc., Vol. XVIII, pp. 201–2.CrossRefGoogle Scholar
Cuénot, L., 1895. Études physiologiques sur les Crustacés Décapodes. Arch. Biol., Vol. XIII, p. 245; Vol. xiv, p. 293.Google Scholar
Dakin, W. J. & Edmonds, E., 1931. The regulation of the salt contents of the blood of aquatic animals, and the problem of the permeability of the bounding membranes of aquatic invertebrates. Australian. J. Exp. Biol. Med. Sci., Vol. VIII, pp. 170–87.Google Scholar
Delaunay, H., 1931. L'excrétion azotée des Invertébrés. Biol. Rev., Vol. VI, pp. 265301.CrossRefGoogle Scholar
Drach, P., 1936. L'eau absorbée au cours de exuviation donnée fundamentale pour l'étude physiologique de la mue. C.R. Acad. Sci., Paris, Vol. CCII, p. 1817.Google Scholar
Drach, P., 1939. Mue et cycle d'intermue chez les Crustacés Décapodes. Ann. Inst. Océanogr. Monaco, Vol. XIX, pp. 103391.Google Scholar
Drilhon, A., 1933. La glucose et la mue des Crustacés. C.R. Acad. Sci., Paris, Vol. CLXLVI, pp. 506–10.Google Scholar
Duval, M., 1925. Recherches physico-chimiques et physiologiques sur le milieu interior des animaux aquatiques. Modifications sous l'influence du milieu extérieur. Ann. Inst. Océanogr. Monaco, Vol. II, pp. 232407.Google Scholar
Edmonds, E., 1935. The relations between the internal fluid of marine invertebrates and the water of the environment, with special reference to Australian Crustacea. Proc. Linn. Soc. N.S.W., Vol. LX, pp. 233–47.Google Scholar
Faxon, W., 1879. On the development of Palaemonetes vulgaris. Bull. Mus. Comp. Zool. Harvard, Vol. V, pp. 303–30.Google Scholar
Frédéricq, L., 1904. Sur la concentration moléculaire du sang et des tissus chez les animaux aquatiques. Arch. Biol., Vol. XX, pp. 701–39.Google Scholar
Fritzsche, H., 1917. Studien über Schwankungen des osmotischen Druckes der Körperflüssigkeiten bei Daphnia magna. Int. Rev. Hydrobiol., Vol. VIII, pp. 2280.CrossRefGoogle Scholar
Gray, J., 1931. Experimental Cytology, pp. 1516. Cambridge.Google Scholar
Grobben, C., 1880. Die Antennendrüse der Crustaceen. Arb. Zool. Inst. Wien, Vol. III, pp. 93110.Google Scholar
Gurney, R., 1923. Some notes on Leander longirostris and other British prawns. Proc. Zool. Soc. Lond., Vol. XIII, pp. 97125.CrossRefGoogle Scholar
Gurney, R., 1939. A description of the adult and larval stages of a new species of Palaemonetes from the Marianne Islands. Annot. Zool. Jap., Vol. XVIII, pp. 145–55Google Scholar
Harnisch, O. 1934. Osmoregulation und osmoregulatorischer Mechanismus der Larve von Chironomus thummi. Z. Vergl. Physiol., Vol. XXI, pp. 281–95.Google Scholar
Henderson, J. R. & Matthai, G., 1910. On certain species of Palaemon from South India. Rec. Ind. Mus., Vol. V, pp. 277305.Google Scholar
Herrmann, Fr., 1931. Über den Wasserhaushalt des Fluss-Krebses (Potamobius astacus). Z. Vergl. Physiol., Vol. XIV, pp. 479524.CrossRefGoogle Scholar
Hill, A. V., 1930. A thermal method of measuring the vapour pressure of an aqueous solution. Proc. Roy. Soc., A, Vol. CXXVII, pp. 919.Google Scholar
Hill, A. V., 1931. Adventures in Biophysics, pp. 1162. Oxford.CrossRefGoogle Scholar
Huf, E., 1936. Der Einfluss des mechanischen Innendrucks auf die Flüssigkeitsausscheidung bei gepanzerten Süsswasser- und Meereskrebsen. Pflüger's Arch., Vol. CCXXXVII, pp. 240–50.CrossRefGoogle Scholar
Hukuda, K., 1932. Change of weight of marine animals in diluted media. J. Exp. Biol., Vol. IX, pp. 61–8.CrossRefGoogle Scholar
Kemp, S., 1915. Fauna of the Chilka Lake: Decapoda. Mem. Ind. Mus., Vol. V, pp. 200325.Google Scholar
Kemp, S., 1925. Notes on Crustacea Decapoda of the Indian Museum XVII. Rec. Ind. Mus., Vol. XXVII, pp. 249343.Google Scholar
Keys, A. B., 1931. Chloride and water secretion and absorption by the gills of the eel. Z. Vergl. Physiol., Vol. XV, pp. 364–89.CrossRefGoogle Scholar
Keys, A. B., 1933. The mechanisms of adaptation in the common eel and the general problem of osmotic regulation in fishes. Proc. Roy. Soc., B, Vol. CXII, pp. 184–99.Google Scholar
Keys, A. & Willmer, E. N., 1932. ‘Chloride-secreting cells’ in the gills of fishes with special reference to the common eel. J. Physiol, Vol. LXXVI, pp. 368–77.CrossRefGoogle Scholar
Koch, H., 1934. Essai d'interprétation de la soi-disant ‘réduction vitale’ de sels d'argent par certains organes d'Arthropodes. Ann. Soc. Sci. Phys. Bruxelles, B, Vol. LIV, pp. 346–61.Google Scholar
Koch, H., 1938. The absorption of chloride ions by the anal papillae of diptera larvae. J. Exp. Biol, Vol. XV, pp. 152–60.CrossRefGoogle Scholar
Kowalevsky, W., 1889. Ein Beitrag zur Kenntnis der Exkretionsorgane. Biol. Zbl., Vol. IX, pp. 3347.Google Scholar
Krogh, A., 1937. Active absorption of ions in the animal kingdom. Nature, London, Vol. CXXXIX, p. 755.CrossRefGoogle Scholar
Krogh, A., 1938. The active absorption of ions in some fresh-water animals. Z. Vergl. Physiol., Vol. xxv, pp. 335–50CrossRefGoogle Scholar
Krogh, A., 1939 Osmotic Regulation in Aquatic Animals, pp. 1242. Cambridge.Google Scholar
Kuenen, D. J., 1939. Systematic and physiological notes on the brine shrimp, Anemia. Arch. Néerland. Zool., Vol. III, pp. 365449.CrossRefGoogle Scholar
Lienemann, L. J., 1938. The green glands as a mechanism for osmotic and ionic regulation in the crayfish (Cambarus clarkii Girard). J. Cell. Comp. Physiol., Vol. XI, pp. 147–61.Google Scholar
Lowndes, A. G. & Panikkar, N. K., 1941. A note on the changes in water content of the lobster (Homarus vulgaris M. Edw.) during moult. J. Mar. Biol. Assoc., Vol. XXV, pp. 111–12.CrossRefGoogle Scholar
Maluf, N. S. R., 1937. The permeability of the integument of the crayfish (Cambarus bartoni) to water and electrolytes. Biol. Zbl., Vol. LVII, pp. 282–7.Google Scholar
Maluf, N. S. R., 1938. Physiology of excretion among the Arthropoda. Physiol. Rev., Vol. XVIII, pp. 2858.CrossRefGoogle Scholar
Maluf, N. S. R., 1939 a. The blood of arthropods. Quart. Rev. Biol., Vol. XIV, pp. 149–91.Google Scholar
Maluf, N. S. R., 1939 b. On the anatomy of the kidney of the crayfish and on the absorption of chloride from fresh water by this animal. Zool. Jahrb., Abt. Allg. Zool, Jena. From Abstract in Biol. Abstracts, Vol. XIV, p. 234, Abst. 2380.Google Scholar
Marchal, P., 1892. Recherches anatomiques et physiologiques sur l'appareil exeréteur des Crustacés décapodes. Arch. Zool. Exp. Gén., Sér. 2, Vol. X, pp. 75275.Google Scholar
Margaria, R. 1931. The osmotic changes in some marine animals. Proc. Roy. Soc., B, Vol. CVII, pp. 606–24.Google Scholar
Mathias, P., 1938. Sur la résistance de Palaemon squilla L. et de Crangon vulgaris F. à la diminution de salure de l'eau. Bull. Soc. Zool. France, Vol. LXIII, pp. 337–43.Google Scholar
Medwedewa, N. B., 1927. Über den osmotischen Druck der Hämolymphe von Artemia salina. Z. Vergl. Physiol., Vol. V, pp. 547–54.CrossRefGoogle Scholar
Krishna, Menon M., 1938. The early larval stages of two species of Palaemon. Proc. Indian Acad. Sci., B, Vol. VIII, pp. 288–94.Google Scholar
Mollitor, A., 1937. Beiträge zur Untersuchung des Exkretstoffwechsels und der Exkretion von Eriocheir sinensis H. Milne-Edwards. Zool. Jahrb., Abt. Allg. Zool., Jena, Vol. LVII, pp. 323–54.Google Scholar
Nagel, H., 1934. Die Aufgaben der Exkretionsorgane und der Kiemen bei der Osmoregulation von Carcinus mamas. Z. Vergl. Physiol., Vol. XXI, pp. 468–91.CrossRefGoogle Scholar
Needham, J., 1930. On the penetration of marine organisms into fresh-water. Biol. Zbl., Vol. L, pp. 504–9.Google Scholar
Needham, J., 1937. Chemical Embryology, Vol. III. London.Google Scholar
Nouvell, L., 1933. Sur la croissance et la fréquence des mues chez les crustacés décapodes Natantia. Bull. Soc. Zool. France, Vol. LVIII, pp. 71–5.Google Scholar
Olmsted, J. M. D. & Baumberger, R. J. P., 1923. Form and growth of grapsoid crabs. J. Morph., Vol. XXXVIII, pp. 279–94.CrossRefGoogle Scholar
Otto, I. P., 1937. Ueber den Einfluss der Temperatur auf den osmotischen Wert der Blutflüssigkeit bei der Wolkhandkrabbe (Eriocheir sinensis H. Milne-Edwards). Zool. Anz., Vol. CXIX, pp. 98105.Google Scholar
Panikkar, N. K., 1937. The prawn industry of the Malabar coast. J. Bombay Nat. Hist. Soc., Vol. XXXIX, pp. 343–53.Google Scholar
Panikkar, N. K., 1939. Osmotic behaviour of Palaemonetes varians (Leach). Nature, London, Vol. CXLIV, p. 866.Google Scholar
Panikkar, N. K., 1940 a. Osmotic properties of the common prawn. Nature, London, Vol. CXLV, p. 108.Google Scholar
Panikkar, N. K., 1940 b. Influence of temperature on osmotic behaviour of some Crustacea and its bearing on problems of animal distribution. Nature, London, Vol. CLXVI, p. 366.CrossRefGoogle Scholar
Panikkar, N. K., 1941. Osmotic behaviour of the fairy shrimp, Chirocephalus diaphanus Prev. J. Exp. Biol., Vol. XVIII, pp. 110–14.CrossRefGoogle Scholar
Panikkar, N. K. & Aiyar, R. G., 1937. The brackish-water fauna of Madras. Proc. Indian Acad. Sci. B, Vol. VI, pp. 284337.CrossRefGoogle Scholar
Panikkar, N. K. & Sproston, N. G., 1941. Osmotic relations of some metazoan parasites. Parasitology, Vol. XXXIII, pp. 214–23.CrossRefGoogle Scholar
Pantin, C. F. A., 1931. Origin of the composition of the body fluids in animals. Biol. Rev., Vol. VI, pp. 459–82.CrossRefGoogle Scholar
Patwardhan, S. S., 1937. Palaemon. Indian Zoological Memoirs, Lucknow, Vol. VI, pp. 1100.Google Scholar
Pearse, A. S., 1932. Freezing-points of blood of certain littoral and estuarine animals. Pap. Tort. Lab. Cam. Inst. Washington Publ., 435, Vol. XXVIII, pp. 93102.Google Scholar
Peters, H., 1935. Über den Einfluss des Salzgehaltes im Aussenmedium auf den Bau und die Funktion der Exkretionsorgane von Dekapoden Crustaceen (nach Untersuchungen an Potamobius fluviatilis und Homarus vulgaris). Z. Morph. Ökol. Tiere, Vol. XXX, pp. 355–81.CrossRefGoogle Scholar
Picken, L. E. R., 1936. The mechanism of urine formation in invertebrates. I. The excretion mechanism in certain Arthropoda. J. Exp. Biol., Vol. XIII, pp. 309–28.CrossRefGoogle Scholar
Pora, E. A., 1938. Behaviour of Palaemon squilla to variation in salinity. Ann. Sci. Univ. Jassy, Vol. XXIV (11), pp. 327–31. (From Chem. and Physiol. Abstracts, 1938, A, Vol. III, p. 934.)Google Scholar
Pora, E. A., 1939. Sur le comportement des Crustacés brachyoures de la Mer Noire aux variations de salinité du milieu ambiant. Ann. Sci. Univ. Jassy, Vol. XXV, pp. 134.Google Scholar
Robertson, J. D., 1937. Some features of the calcium metabolism of the shore crab (Cardnus maenas). Proc. Roy. Soc. B, Vol. CXXIV, pp. 162–82.Google Scholar
Robertson, J. D., 1939. Ionic composition of the blood of some marine animals. J. Exp. Biol., Vol. XVI, pp. 387–97.CrossRefGoogle Scholar
Schlieper, C., 1929. Ueber die Einwirkung niederer Salzkonzentrationen auf marine Organismen. Z. Vergl. Physiol., Vol. IX, pp. 478514.CrossRefGoogle Scholar
Schlieper, C., 1930. Die Osmoregulation wasserlebender Tiere. Biol. Rev., Vol. V, pp. 309–56.CrossRefGoogle Scholar
Schlieper, C., 1935. Neure Ergebnisse und Probleme aus dem Gebiet der Osmoregulation wasserlebender Tiere. Biol. Rev., Vol. X, pp. 334–60.CrossRefGoogle Scholar
Schlieper, C. & Herrmann, F., 1930. Beziehungen zwischen Bau und Funktion bei den Exkretionsorganen von Dekapoden Crustaceen. Zool. Jahrb., Abt. Anat., Jena, Vol. LII, pp. 624–30.Google Scholar
Schnakenbeck, W., 1933. Leander longirostris (H. M.-Edw.) in der Unter-Elbe. Zool. Anz., Vol. CII, pp. 129–35.Google Scholar
Scholles, W., 1933. Über die Mineralregulation wasserlebender Evertebraten. Z. Vergl. Physiol., Vol. XIX, pp. 522–54.CrossRefGoogle Scholar
Schwabe, E., 1933. Über die Osmoregulation verschiedener Krebse. Z. Vergl. Physiol., Vol. XIX, pp. 183236.CrossRefGoogle Scholar
Sexton, E. W. & Matthews, A., 1913. Note on the life history of Gammarus chevreuxii. J. Mar. Biol. Assoc., Vol. IX, pp. 546–56.CrossRefGoogle Scholar
Smith, , Homer, W., 1930. The absorption and excretion of water and salts by marine teleosts. Amer. J. Physiol., Vol. XCIII, pp. 480505.CrossRefGoogle Scholar
Sollaud, E., 1923. Le dévelopement larvaire des Palaemoninae, I: La condensation progressive de l'ontogénèse. Bull. Biol. France et Belg., Vol. LVII, pp. 510603.Google Scholar
Sollaud, E., 1932. Le développement du Palaemonetes mesopotamicus Pesta, comparé à celui des autres Palaemonetes circaméditerranéens. C.R. Acad. Sci., Paris, Vol. CXCIV, pp. 2233–5.Google Scholar
Vialli, M., 1925. La pressione osmotica negli invertebrati. Arch. Fisiologia, Vol. XXIII, pp. 577–96.Google Scholar
Webb, D. A., 1940. Ionic regulation in Cardnus maenas. Proc. Roy. Soc. London, B, Vol. CXXIX, pp. 107–36.Google Scholar
Weldon, W. F. R., 1889. The coelom and nephridia of Palaemon serratus. J. Mar. Biol. Assoc., Vol. I, pp. 162–8.CrossRefGoogle Scholar
Weldon, W. F. R., 1891. The renal organs of certain decapod Crustacea. Quart. J. micr. Sci., Vol. XXXII, pp. 279–92.Google Scholar
Widmann, E., 1935. Osmoregulation bei einheimischen Wasser- und Feuchtluft-Crustaceen. Z. Wiss. Zool., Vol. CXLVII, pp. 132–69.Google Scholar
Wigglesworth, V. B., 1933. The adaptation of mosquito larvae to salt water. J. Exp. Biol., Vol. X, pp. 2737.CrossRefGoogle Scholar
Wigglesworth, V. B., 1938. The regulation of osmotic pressure and chloride concentration in the haemolymph of mosquito larvae. J. Exp. Biol., Vol. XV, pp. 235–47.CrossRefGoogle Scholar
Yonge, C. M., 1932. On the nature and permeability of chitin. I. The chitin lining the foregut of decapod Crustacea and the function of the tegumental glands. Proc. Roy. Soc. B, Vol. CXI, pp. 298329.Google Scholar
Yonge, C. M., 1936. On the nature and permeability of chitin. II. The permeability of uncalcified chitin lining the foregut of Homarus. Proc. Roy. Soc. B, Vol. CXX, pp. 1541.Google Scholar