Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-18T00:21:16.869Z Has data issue: false hasContentIssue false

Palaeomagnetism of the Bayan Gol Formation, western Mongolia

Published online by Cambridge University Press:  01 May 2009

D. A. Evans
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
A. Yu. Zhuravlev
Affiliation:
Palaeontological Institute, Russian Academy of Sciences, 117647 Moscow, Russia
C. J. Budney
Affiliation:
Department of Geology and Geophysics, University of Hawaii, 2525 Correa Rd., Honolulu, HI 96822, USA
J. L. Kirschvink
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

Oriented samples of the Lower Cambrian Bayan Gol Formation from Salaany Gol, Mongolia, were collected at roughly 5 m stratigraphic intervals for palaeomagnetic analysis. Progressive alternatingfield and thermal demagnetization isolated two magnetic components: a present-field overprint, typically removed by 10 mT fields and ~200°C heating; and a high-coercivity, high-unblocking-temperature (550–600 °C), predominantly single-polarity component that was imparted to the rocks prior to early or middle Palaeozoic deformation. Single-polarity magnetization at Salaany Gol contrasts with results from Lower Cambrian rocks on the Siberian platform, previously considered correlative with the Bayan Gol Formation, which show a prominent change in polarity bias near the top of the Tommotian Stage. Two hypotheses can explain this discrepancy. First, the entire Bayan Gol Formation may correlate with the predominantly reversely polarized, lower half of the Tommotian Stage in Siberia. This model is consistent with plausible interpretations of δ13C profiles for the Zavkhan basin and the Siberian platform. Alternatively, the characteristic magnetic direction from our samples may be a pre-fold overprint. If post-accretionary, then comparison with Siberian palaeomagnetic results suggest a Silurian–Devonian remagnetization age, and existing bioand chemostratigraphic correlations provide the most reliable spatial and temporal links between the Zavkhan basin and the Siberian platform. If the observed magnetic directions are primary or an immediate overprint then they may be used to constrain the early Cambrian palaeogeography of the Zavkhan basin and the Palaeo-Pacific Ocean. Mean inclination of 62 ±4° corresponds to a palaeolatitude of 44 ±5°, several thousand kilometres from the equatorial Siberian craton

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brasier, M. D., Shields, G., Kuleshov, V. & Zhegallo, E., 1996. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic—early Cambrian in southwest Mongolia. Geological Magazine 133, 445–85.CrossRefGoogle Scholar
Esakova, N. V. & Zhegallo, E. A., 1996. Stratigrafiya i fauna nizhnego kembriya Mongolii (Lower Cambrian stratigraphy and fauna of Mongolia). Sovmestnaya Sovetsko-Mongol’skaya Paleontologicheskaya Ekspeditsiya, Trudy 46, 208 pp. (in Russian).Google Scholar
Fang, W., Van Der Voo, R. & Liang, Q., 1990. Ordovician paleomagnetism of eastern Yunnan, China. Geophysical Research Letters 17, 953–6.CrossRefGoogle Scholar
Fisher, N. I., Lewis, T. & Embleton, B. J. J., 1987. Statistical analysis of spherical data. Cambridge: Cambridge University Press, 329 pp.Google Scholar
Gorzhevskiy, D. I. & Shabalovskiy, A. Ye., 1972. Some new data on deep-seated Mongol-Okhotsk fault. International Geology Review 14, 895904.Google Scholar
Khasin, R. A., Borzakovskiy, Yu. A. & Zonenshayn, L. P. (eds) 1973. Geologiya Mongol’skoy Narodnoy Respubliki: Tom II: Magmatizm, metamorfizm, tektonika (Geology of the Mongolian People’s Republic: Volume II: Magmatism, metamorphism, tectonics). Moscow: Nedra Press, 752 pp. (in Russian).Google Scholar
Khomentovsky, V. V. & Gibsher, A. S., 1996. The Neoproterozoic—lower Cambrian in northern Govi-Altay, western Mongolia: regional setting, lithostratigraphy and biostratigraphy. Geological Magazine 133, 371–90.Google Scholar
Khramov, A. N., 1982. Palaeomagnetology. Leningrad: Nedra Press, 312 pp. (in Russian).Google Scholar
Kirschvink, J. L., 1978. The Precambrian—Cambrian boundary problem: magnetostratigraphy of the Amadeus Basin, central Australia. Geological Magazine 115, 139–50.CrossRefGoogle Scholar
Kirschvink, J. L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.CrossRefGoogle Scholar
Kirschvink, J. L., Magaritz, M., Ripperdan, R. L., Zhuravlev, A. Yu. & Rozanov, A. Yu., 1991. The Precambrian/Cambrian boundary: magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia, Morocco, and South China. GSA Today 1, 6971, 87, 91.Google Scholar
Kirschvink, J. L. & Rozanov, A. Yu., 1984. Magnetostratigraphys of lower Cambrian strata from the Siberian Platform: a palaeomagnetic pole and a preliminary polarity time-scale. Geological Magazine 121, 189203.Google Scholar
Korobov, M. N., 1989. Biostratigrafiya i polimernye trilobity nizhnego kembriya Mongolii (Lower Cambrian biostratigraphy and polymeroid trilobites of Mongolia). Sovmestnaya Sovetsko-Mongol’skaya Paleontologicheskaya Ekspeditsiya, Trudy 46, 208 pp. (in Russian).Google Scholar
Li, Y., 1990. An apparent polar wander path from the Tarim block, China. Tectonophysics 181, 3141.Google Scholar
Lindsay, J. F., Brasier, M. D., Shields, G., Khomentovsky, V. V. & Bat-Ireedui, Y. A., 1996. Glacial facies asssociations in a Neoproterozoic back-arc setting, Zavkhan Basin, western Mongolia. Geological Magazine 133, 391402.CrossRefGoogle Scholar
Mcfadden, P. L., 1990. A new fold test for palaeomagnetic studies. Geophysical Journal International 103, 163–9.CrossRefGoogle Scholar
Mossakovsky, A. A., Ruzhentsev, S. V., Samygin, S. G. & Kheraskova, T. N., 1992. On two types of palaeo-oceanic structures in central Asia. Doklady Akademii Nauk 323, 377–81 (in Russian).Google Scholar
Mossakovsky, A. A., Ruzhentsev, S. V., Samygin, S. G. & Kheraskova, T. N., 1994. Central Asian fold belt: Geodynamic evolution and formation history. Geotectonics 27, 445–74.Google Scholar
Pruner, P., 1992. Palaeomagnetism and palaeogeography of Mongolia from the Carboniferous to the Cretaceous—final report. Physics of the Earth and Planetary Interiors 70, 169–77.CrossRefGoogle Scholar
Şengör, A. M. C., Natal’in, B. A. & Burtman, V. S., 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 264, 299307.CrossRefGoogle Scholar
Ushatinskaya, G. T., 1995. Drevneyshie lingulyaty (The earliest lingulates). Rossiyskaya Akademiya Nauk, Paleontologicheskiy Institut, Trudy 262, 91 pp. (in Russian).Google Scholar
Van der Voo, R., 1990. The reliability of paleomagnetic data. Tectonophysics 184, 19.Google Scholar
Van der Voo, R., 1993. Paleomagnetism of the Atlantic, Tethys and lapetus Oceans. Cambridge: Cambridge University Press, 411 pp.Google Scholar
Voronin, Yu. I., Voronova, L. G., Grigor’eva, N. V., Drozdova, N. A., Zhegallo, E. A., Zhuravlev, A. Yu., Ragozina, A. L., Rozanov, A. Yu., Sayutina, T. A., Sysoev, V. A. & Fonin, V. D., 1982. The Precambrian/Cambrian boundary in the geosynclinal areas (the reference seection of Salaany-Gol, MPR). Sovmestnaya Sovetsko-Mongol’skaya Paleontologicheskaya Ekspeditsiya, Trudy 18, 152 pp. (in Russian).Google Scholar
Voronova, L. G., Voronin, Yu. I., Drozdova, N. A., Esakova, N. V., Zhegallo, E. A., Zhuravlev, A. Yu., Luchinina, V. A., Meshkova, N. P., Ragozina, A. L., Sayutina, T. A. & Fonin, V. D., 1986. Organicheskie ostatki v nizhnekembriyskikh otlozheniyakh mezhdurech’ya Dzabkhana i Khunguya (Mongoliya) [Organic remains in the Lower Cambrian strata of the Zavkhan and Khungiy interfluve (Mongolia)]. Akademiya Nauk SSSR, Sibirskoe Otdelnie, Institut Geologii i Geofiziki, Trudy 669, 163–8 (in Russian).Google Scholar
Wang, Z., Van der Voo, R. & Wang, Y., 1994. Paleomagnetic results from Late Sinian/Early Cambrian rocks in Guizhou Province, South China block. In Magnetism: Rocks to Superconductors (ed. Subbarao, K. V.), pp. 159–82. Geological Society of India, Memoir no. 29.Google Scholar
Wood, R., Zhuravlev, A. Yu. & Chimed, Tseren A., 1993. The ecology of Lower Cambrian buildups from Zuune Arts, Mongolia: Implications for early metazoan reef evolution. Sedimentology 40, 829–58.CrossRefGoogle Scholar
Wu, F., Van der Voo, R. & Liang, Q., 1988/1989. Reconnaissance magnetostratigraphy of the Precambrian—Cambrian boundary section at Meishucun, China. Cuademos de Geologica Iberica 12, 205–22.Google Scholar
Yashina, R. M., Matrenitskiy, A. T. & Garam, D., 1979. On the relationship between Devonian and Permian orogenic magmatism in the early Caledonides of northern Mongolia. Soviet Geology and Geophysics 20, 40–6.Google Scholar