Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T12:04:22.448Z Has data issue: false hasContentIssue false

Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora

Published online by Cambridge University Press:  11 May 2009

Eve C. Southward
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Extract

Young vestimentiferans, ranging from 0.15 to 10 mm in length, were examined by light and electron microscopy (SEM and TEM). The newly settled stages have a functional gut and traces of larval ciliation, which suggests that they may have developed from a planktonic trochophore stage. The larval mouth becomes an elongated siphon and the ciliated gut persists for some time after the development of the bacterial symbiosis in the trophosome. The segmentation of the body in the earliest stages is similar to that in postlarval Pogonophora, and it is concluded that Vestimentifera and Pogonophora are closely related.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bakke, T., 1974. Settling of the larvae of Siboglinum fiordicum Webb (Pogonophora) in the laboratory. Sarsia, 56, 5770.CrossRefGoogle Scholar
Bakke, T., 1976. The early embryos of Siboglinum fiordicum Webb (Pogonophora) reared in the laboratory. Sarsia 60, 112.Google Scholar
Bakke, T., 1977. Development of Siboglinum fiordicum Webb after metamorphosis. Sarsia, 63, 6573.CrossRefGoogle Scholar
Beklemishev, W. N., 1944. Principles of Comparative Anatomy of Invertebrates. Moscow: Nauka. [In Russian; English transl. of 3rd ed., 1964, publ. by Oliver & Boyd, Edinburgh, in 1969.]Google Scholar
Corliss, J. B. & Ballard, R. D., 1977. Oases of life in the cold abyss. National Geographic, 152 (4), 441453.Google Scholar
Crane, K., 1985. The distribution of geothermal fields along the mid-ocean ridge: an overview. Bulletin of the Biological Society of Washington, 6, 318.Google Scholar
George, J. D. & Southward, E. C., 1973. A comparative study of the setae of Pogonophora and polychaetous Annelida. Journal of the Marine Biological Association of the United Kingdom, 53, 403424.CrossRefGoogle Scholar
Grassle, J. F., 1987. The ecology of deep-sea hydrothermal vent communities. Advances in Marine Biology, 23, 301362.CrossRefGoogle Scholar
Gureeva, M. A., & Ivanov, A. V., 1986. The development of the coelomic mesoderm in Oligobrachia mashikoi (Pogonophora). Zoologicheskii zhurnal, 65, 780788. [In Russian.]Google Scholar
Hannerz, L., 1956. Larval development of the polychaete families Spionidae Sars, Disomidae, Mesnil and Poecilochaetidae n. fam. in the Gullmar Fjord (Sweden). Zoologiska bidrag frdn Uppsala, 31, 1204.Google Scholar
Ivanov, A. V., 1955 a. On assigning the class Pogonophora to a new Deuterostomate phylum Brachiata A. Ivanov, phyl. nov. Doklady Akademii nauk SSSR, 100, 595596. [In Russian.]Google Scholar
Ivanov, A. V., 1955 b. The main features of the organization of Pogonophora. Systematic Zoology, 4, 171177.CrossRefGoogle Scholar
Ivanov, A. V., 1963. Pogonophora. London: Academic Press.Google Scholar
Ivanov, A. V., 1964. On the structure of the hind region of the body in Pogonophora. Zoologicheskii zhurnal, 43, 581589. [In Russian.]Google Scholar
Ivanov, A. V., 1975. Embryonalentwicklung der Pogonophora und ihre systematisch Stellung. Zeitschrift filr zoologische Systematik undEvolutionsforschung, Sonderheft 1975, 1044.Google Scholar
Jones, M. L., 1981. Riftia pachyptila, new genus, new species, the vestimentiferan worm from the Galapagos Rift geothermal vents (Pogonophora). Proceedings of the Biological Society of Washington, 93, 12951313.Google Scholar
Jones, M. L., 1985 a. Vestimentiferan Pogonophores: Their Biology And Affinities. In The Origins and Relationships of Lower Invertebrates (ed. Morris, S. C., George, J. D., Gibson, R. and Platt, H. M.), pp. 326342. Oxford: Oxford University Press. [Systematics Association, special volume 28.]Google Scholar
Jones, M. L., 1985 b. On the Vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Bulletin of the Biological Society of Washington, 6, 117158.Google Scholar
Jones, M. L., 1987. Recent observations on the Vestimentifera. Abstracts of the Annual Meeting of the American Association for the Advancement of Science, 153, 2122.Google Scholar
Land, J. Van Der & Nørrevang, A., 1975. The systematic position of Lamellibrachia (Annelida, Vestimentifera). Zeitschrift fiir zoologische Systematik und Evolutionsforschung, Sonderheft 1975, 86101.Google Scholar
Land, J. Van Der & Nørrevang, A., 1977. Structure and relationships of Lamellibrachia (Annelida, Vestimentifera). Biologiske Skrifter, 21 (3), 102 pp.Google Scholar
Nielsen, C., 1987. Structure and function of metazoan ciliary bands and their phylogenetic significance. Acta zoologica, Stockholm, 68, 205262.Google Scholar
Norrevang, A., 1970 a. On the embryology of Siboglinum and its implications for the systematic position of the Pogonophora. Sarsia, 42, 716.CrossRefGoogle Scholar
Nørrevang, A., 1970 b. The position of the Pogonophora in the phylogenetic system. Zeitschrift für zoologische Systematik und Evolutionsforschung, 8, 161172.CrossRefGoogle Scholar
Southward, E. C., 1969. Growth of a pogonophore: a study of Polybrachia canadensis with a discussion of the development of taxonomic characters. Journal of Zoology, 157, 449467.CrossRefGoogle Scholar
Southward, E. C., 1975 a. Fine structure and phylogeny of the Pogonophora. Symposia of the Zoological Society of London, no. 36, 235251.Google Scholar
Southward, E. C., 1976 b. A study of the structure of the opisthosoma of Siboglinum fiordicum. Zeitschrift für zoologische Systematik und Evolutionsforschung, Sonderheft 1975, 64—76.Google Scholar
Southward, E. C., 1975 c. Pogonophora. In Reproduction of Marine Invertebrates, vol. 2 (ed. Giese, A. C. and Pearse, J. S.), pp. 129156. New York: Academic Press.Google Scholar
Southward, E. C., 1980. Regionation and metamerisation in Pogonophora. Zoologischer Jahrbūcher (Abteilung für Anatomie und Ontogenie der Tiere), 10, 264275.Google Scholar
Southward, E. C., 1982. Bacterial symbionts in Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 62, 889906.Google Scholar
Southward, E. C., 1987. Contribution of symbiotic chemoautotrophs to the nutrition of benthic invertebrates. In Microbes in the Sea (ed. Sleigh, M. A.), pp. 83118. Chichester: Ellis Horwood.Google Scholar
Tunnicliffe, V. & Fontaine, A. R., 1987. Faunal composition and organic surface encrustations at hydrothermal vents on the southern Juan de Fuca Ridge. Journal of Geophysical Research, 92 (B11), 11 303–11 314.CrossRefGoogle Scholar
Tunnicliffe, V., Botros, M., De Burgh, M. E., Dinet, A., Johnson, H. P., Juniper, S. K. & McDuff, R. E., 1986. Hydrothermal vents of Explorer Ridge, northeast Pacific. Deep-Sea Research, 33, 401412.Google Scholar
Tunnicliffe, V., Juniper, S. K. & De Burgh, M. E., 1985. The hydrothermal vent community on Axial Seamount, Juan de Fuca Ridge. Bulletin of the Biological Society of Washington, 6, 453464.Google Scholar
Webb, M., 1964. The posterior extremity of Siboglinum fiordicum (Pogonophora). Sarsia, 15, 3336.Google Scholar
Webb, M., 1969. Lamellibrachia barhami gen. nov., sp. nov. (Pogonophora) from the northeast Pacific. Bulletin of Marine Science, 19, 18—47.Google Scholar