Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T23:06:23.169Z Has data issue: false hasContentIssue false

The significance of dissolved organic compounds in the nutrition of Siboglinum ekmani and other small species of Pogonophora

Published online by Cambridge University Press:  11 May 2009

A. J. Southward
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth
Eve C. Southward
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth

Extract

Siboglinum ekmani can accumulate labelled alanine, glycine, phenylalanine, glutamic acid, galactose, glucose, mannose, acetic acid, palmitic acid, lactic acid and glycollic acid from sea water at concentrations between 1 and 100 μM/1. Uptake of fructose and mannitol was not detected. The neutral amino acids were absorbed against a concentration gradient, probably by a carrier-mediated transport mechanism, and similar mechanisms may exist for acidic amino acids and glucose. Most of the compounds entered into the metabolism, but 90% of the glycine accumulated was retained as free amino acid. The presence of glucose appeared to depress uptake of alanine, but uptake of glucose was stimulated by alanine.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahearn, G. A. & Gomme, J., 1975. Transport of exogenous D-glucose by the integument of a polychaete worm (Nereis diversicolor Müller). Journal of Experimental Biology, 62, 243264.CrossRefGoogle Scholar
Allen, W. V. & Kilgore, J., 1975. The essential amino acid requirements of the red abalone, Haliotis rufescens. Comparative Biochemistry and Physiology, 50 A, 771775.CrossRefGoogle ScholarPubMed
Bamford, D. R. & Gingles, R., 1974. Absorption of sugars in the gill of the Japanese oyster, Crassostrea gigas. Comparative Biochemistry and Physiology, 49 A, 637646.CrossRefGoogle Scholar
Bamford, D. R. & McCrea, R., 1975. Active absorption of neutral and basic amino acids by the gill of the common cockle, Cerastoderma edule. Comparative Biochemistry and Physiology, 50 A, 811817.CrossRefGoogle Scholar
Bohling, H., 1970. Untersuchungen über freie gelöste Aminosaüren in Meereswasser. Marine Biology, 6, 213225.CrossRefGoogle Scholar
Brattegard, T., 1967. Pogonophora and associated fauna in the deep basin of Sognefjorden. Sarsia, 29, 299306.CrossRefGoogle Scholar
Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K. & Van Andel, T. H., 1979. Submarine thermal springs on the Galàpagos Rift. Science, New York, 203, 10731083.CrossRefGoogle ScholarPubMed
Costopulos, J. J., Stephens, G. C. & Wright, S. H., 1979. Uptake of amino acids by marine polychaetes under anoxic conditions. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 157, 434444.CrossRefGoogle ScholarPubMed
De Burgh, M. E., West, B. & Jeal, F., 1977. Absorption of L-alanine and other dissolved nutrients by the spines of Paracentrotus lividus (Echinoidea). Journal of the Marine Biological Association of the United Kingdom, 57, 10311045.CrossRefGoogle Scholar
DiDomenico, D. A. & Iverson, R. L., 1977. Uptake of glycolic acid by a marine bivalve. Journal of Experimental Marine Biology and Ecology, 28, 243254.CrossRefGoogle Scholar
Erséus, C., 1979. Taxonomic revision of the marine genus Phallodrilus Pierantoni (Oligochaeta, (Tubificidae), with descriptions of thirteen new species. Zoologica Scripta, 8, 187208.CrossRefGoogle Scholar
Ferguson, J. C., 1971. Uptake and release of free amino acids by starfishes. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 141, 122129.CrossRefGoogle ScholarPubMed
Haldane, J. B. S., 1930. Enzymes. 235 pp. London: Longmans, Green & Co.Google Scholar
Hempling, H. G., 1972. The ascites tumour cell. In Transport and Accumulation in Biological Systems, 3rd edition (ed. Harris, E. J.), pp. 271288. Baltimore: University Park Press & London: Butter worths.Google Scholar
Henrichs, S. M. & Farrington, J. W., 1979. Amino acids in interstitial waters of marine sediments. Nature, London, 279, 319322.CrossRefGoogle Scholar
Hochachka, P. W., 1975. An explanation of metabolic and enzyme mechanisms underlying animal life without oxygen. In Biochemical and Biophysical Perspectives in Marine Biology, vol. 2 (ed. Malins, D. C. and Sargent, J. R.), pp. 107137. London: Academic Press.Google Scholar
Hylleberg, J., 1975. Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia, 14, 113137.CrossRefGoogle Scholar
Ivanov, A. V., 1963. Pogonophora. 497 pp. London: Academic Press.CrossRefGoogle Scholar
Johannes, R. E., Coward, S. J. & Webb, K. L., 1969. Are dissolved amino acids an energy source for marine invertebrates? Comparative Biochemistry and Physiology, 29, 283288.CrossRefGoogle Scholar
Johannes, R. E. & Webb, K. L., 1970. Release of dissolved organic compounds by marine and freshwater invertebrates. In Symposium on Organic Matter in Natural Waters, Alaska, 1968 (ed. Hood, D. W.), pp. 257273. [Institute of Marine Sciences, University of Alaska, Occasional Publication, no. 1.]Google Scholar
Jørgensen, C. B., 1976. August Pütter, August Krogh, and the modern ideas on the use of dissolved organic matter in aquatic environments. Biological Reviews, 51, 291328.CrossRefGoogle Scholar
Jørgensen, N. O. G., 1979. Uptake of L-valine and other amino acids by the polychaete Nereis virens. Marine Biology, 52, 4552.CrossRefGoogle Scholar
Little, C. & Gupta, B. L., 1969. Studies on Pogonophora. III. Uptake of nutrients. Journal of Experimental Biology, 51, 759773.CrossRefGoogle Scholar
Lonsdale, P., 1977. Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centres. Deep-Sea Research, 24, 857863.CrossRefGoogle Scholar
Lonsdale, P., 1979. A deep sea hydrothermal site on a strike-slip fault. Nature, London, 281, 531534.CrossRefGoogle Scholar
McCammon, H. M. & Reynolds, W. A., 1976. Experimental evidence for direct nutrient assimilation by the lophophore of articulate braohiopods. Marine Biology, 34, 4151.CrossRefGoogle Scholar
Maguire, C. & Boaden, P. J. S., 1975. Energy and evolution in the thiobios: an extrapolation from the marine gastrotrich Thiodasys sterreri. Cahiers de biologie marine, 16, 635646.Google Scholar
Manwell, C., Southward, E. C. & Southward, A. J., 1966. Preliminary studies on haemoglobin and other proteins of the Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 46, 115124.CrossRefGoogle Scholar
Meyer-Reil, L.-A., 1978. Uptake of glucose by Bacteria in the sediment. Marine Biology, 44, 293298.CrossRefGoogle Scholar
Moore, S. & Stein, W. H., 1954. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. Journal of Biochemistry, 211, 907913.Google ScholarPubMed
Neame, K. D. & Richards, T. G., 1972. Elementary Kinetics of Membrane Carrier Transport. 120 pp. Oxford: Blackwell Scientific Publications.Google Scholar
Neihof, R. & Loeb, G., 1974. Dissolved organic matter in seawater and the electric charge of immersed surfaces. Journal of Marine Research, 32, 511.Google Scholar
Pandian, T. J., 1975. Mechanisms of heterotrophy. In Marine Ecology, vol. 2, part 1 (ed. Kinne, O.), pp. 61249. London: Wiley-Interscience.Google Scholar
Reish, D. J. & Stephens, G. C., 1969. Uptake of organic material by aquatic invertebrates. V. The influence of age on the uptake of glycine-C14 by the polychaete Neanthes arenaceodentata. Marine Biology, 3, 352355.CrossRefGoogle Scholar
Robinson, J. W. L. & Alvarado, F., 1971. Interaction between the sugar and amino-acid transport systems at the small intestinal brush border: a comparative study. Pflügers Archiv, 326, 4875.CrossRefGoogle ScholarPubMed
Schlichter, D., 1974. Der Einfluss physikalischer und chemischer Faktoren auf die Aufnahme in Meereswasser gelöster Aminosäuren durch Aktinien. Marine Biology, 25, 279290.CrossRefGoogle Scholar
Schlichter, D., 1978. On the ability of Anemonia sulcata (Coelenterata: Anthozoa) to absorb charged and neutral amino acids simultaneously. Marine Biology, 45, 97104.CrossRefGoogle Scholar
Schöttler, U. & Schroff, G., 1976. Untersuchungen zum anaeroben Glykogenabbau bei Tubifex tubifex M. Journal of Comparative Physiology, 108(B), 243254.CrossRefGoogle Scholar
Sepers, A. B. J., 1977. The utilisation of dissolved organic compounds in aquatic environments. Hydrobiologia, 52, 3954.CrossRefGoogle Scholar
Shick, J. M., 1975. Uptake and utilization of dissolved glycine by Amelia aurita scyphistosomae: temperature effects on the uptake process; nutritional role of dissolved amino acids. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 148, 117140.CrossRefGoogle Scholar
Siebers, D., 1979. Transintegumentary uptake of dissolved amino acids in the sea star Asterias rubens. A reassessment of its nutritional role with special reference to the significance of heterotrophic bacteria. Marine Ecology–Progress Series, 1, 169177.CrossRefGoogle Scholar
Siebers, D. & Bulnheim, H. P., 1977. Salinity dependence, uptake kinetics, and specificity of amino-acid absorption across the body surface of the oligochaete annelid Enchytraeus albidus. Helgoländer wissenschaftliche Meeresuntersuchungen, 29, 473492.CrossRefGoogle Scholar
Southward, A. J., 1975. On the evolutionary significance of the mode of feeding of Pogonophora. Zeitschrift fur zoologische Systematik und Evolutionsforschung – Special Issue, 1975, 7785.Google Scholar
Southward, A. J. & Dixon, D. R., 1980. A note on the free amino acids in some small species of Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 60, 171174.CrossRefGoogle Scholar
Southward, A. J. & Southward E. C., 1963. Notes on the biology of some Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 43, 5764.CrossRefGoogle Scholar
Southward, A. J. & Southward, E. C., 1970. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Experiments on three species of Pogonophora. Sarsia, 45, 6995.CrossRefGoogle Scholar
Southward, A. J. & Southward, E. C., 1972 a. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. II. Uptake by other animals living in the same habitat as pogonophores and by some littoral Polychaeta. Sarsia, 48, 6168.CrossRefGoogle Scholar
Southward, A. J. & Southward, E. C., 1972 b. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. III. Uptake in relation to the organic content of the habitat. Sarsia, 50, 2946.CrossRefGoogle Scholar
Southward, A. J., Southward, E. C., Brattegard, T. & Bakke, T., 1979. Further experiments on the value of dissolved organic matter as food for Siboglinum fiordicum (Pogonophora). Journal of the Marine Biological Association of the United Kingdom, 59, 133148.CrossRefGoogle Scholar
Southward, E. C., 1972. On some Pogonophora from the Caribbean and the Gulf of Mexico. Bulletin of Marine Science, 22, 739776.Google Scholar
Southward, E. C., 1975. Fine structure and phylogeny of the Pogonophora. Symposia of the Zoological Society of London, no. 36, 235251.Google Scholar
Southward, E. C. & Southward, A. J., 1966. A preliminary account of the general and enzyme histochemistry of Siboglinum atlanticum and other Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 46, 579616.Google Scholar
Stephens, G. C., 1963. Uptake of organic material by aquatic invertebrates. II. Accumulation of amino acids by the bamboo worm, Clymenella torquata. Comparative Biochemistry and Physiology, 10, 191202.CrossRefGoogle ScholarPubMed
Stephens, G. C., 1964. Uptake of organic material by aquatic invertebrates. III. Uptake of glycine by brackish water annelids. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 126, 150162.CrossRefGoogle Scholar
Stephens, G. C., 1968. Dissolved organic matter as a potential source of nutrition for marine organisms. American Zoologist, 8, 95106.CrossRefGoogle Scholar
Stephens, G. C., 1975. Uptake of naturally occurring amines by marine annelids. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 149, 397407.CrossRefGoogle ScholarPubMed
Stephens, G. C., Volk, M. J., Wright, S. H. & Backlund, P. S., 1978. Transepidermal accumulation of naturally occurring amino acids in the sand dollar, Dendraster excentricus. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 154, 335347.CrossRefGoogle Scholar
Stewart, M. G., 1978 a. Kinetics of neutral amino acid transport by isolated gill tissues of the bivalve Mya arenaria (L.). Journal of Experimental Marine Biology and Ecology, 32, 3952.CrossRefGoogle Scholar
Stewart, M. G., 1978 b. The uptake and utilization of dissolved amino acids by the bivalve Mya arenaria (L.). In Proceedings of the Twelfth European Marine Biological Symposium (ed. McClusky, D. S. and Berry, A. J.), pp. 165179. Oxford: Pergamon Press.Google Scholar
Stewart, M. G., 1979. Absorption of dissolved organic nutrients by marine invertebrates. Oceanography and Marine Biology, an Annual Review, 17, 163192.Google Scholar
Ullrich, K. J., 1979. Sugar, amino acid and Na+ cotransport in the proximal tubule. Annual Review of Physiology, 41, 181195.CrossRefGoogle ScholarPubMed
Webb, M., 1964. Additional notes on Sclerolinum brattstromi (Pogonophora) and the establishment of a new family, Sclerolinidae. Sarsia, 16, 4758.CrossRefGoogle Scholar
Webb, M., 1969. Lamellibrachia barhami gen.nov., sp.nov. from the northwest Pacific. Bulletin of Marine Science, 19, 1847.Google Scholar
Wells, R. M. G. & Dales, R. P., 1976. A preliminary investigation into the oxygen-combining properties of pogonophore haemoglobin. Comparative Biochemistry and Physiology, 54 A, 395396.CrossRefGoogle ScholarPubMed
West, B., De Burgh, M. & Jeal, F., 1977. Dissolved organics in the nutrition of benthic invertebrates. In Biology of Benthic Organisms. Proceedings of the 11th European Symposium on Marine Biology, Galway, Ireland, 1976 (ed. Keegan, B. F., Ó Céidigh, P. and Boaden, P. J. S.), pp. 578593. Oxford: Pergamon Press.Google Scholar
Wright, S. H. & Stephens, G. C., 1977. Characteristics of influx and net flux of amino acids in Mytilus californianus. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 152, 295310.CrossRefGoogle ScholarPubMed
Wright, S. H. & Stephens, G. C., 1978. Removal of amino acid during a single passage of water across the gill of marine mussels. Journal of Experimental Zoology, 205, 337352.CrossRefGoogle Scholar
Zwaan, A. de, de Bont, A. M. TH. & Kluytmans, J. H. F. M., 1975. Metabolic adaptations on the aerobic-anaerobic transition in the sea mussel Mytilus edulis L. In Proceedings of the Ninth European Marine Biology Symposium, Oban, Scotland, 1974 (ed. Barnes, H.), pp. 121138. Aberdeen: Aberdeen University Press.Google Scholar