Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-26T22:47:47.438Z Has data issue: false hasContentIssue false

The Chorioidal Tapeta of some Cartilaginous Fishes (Chondrichthyes)

Published online by Cambridge University Press:  11 May 2009

E. J. Denton
Affiliation:
The Plymouth Laboratory
J. A. C. Nicol
Affiliation:
The Plymouth Laboratory

Extract

1. A study of the histology of the eyes of some cartilaginous fishes has been made with special reference to their reflecting tapeta.

2. The rate and way in which the pigment in the melanophores spreads over the reflecting cells of the tapetum of Squalus acanthias when it is lightadapted are described.

3. The reflecting plates in the tapeta are about parallel to the plane of the retina in the centre of the eye, but as we move towards the periphery they become more oblique, until near the ora they are almost perpendicular to the plane of the retina. It is shown that when we take account of the way in which the pupil limits the light which can reach the retina in all these situations the plates are arranged to be roughly perpendicular to the incident light. They reflect light either back through the pupil or on to the very black inside surface of the iris and do not scatter it to other parts of the eye.

4. The reflectivity of tapeta for various angles and various wave-lengths of light has been found by several different methods, and a new and simple way of measuring the reflectivity of natural tissues is described. For the blue and green lights which will be those reaching the eye in life the reflectivity is very high, over 80%, and so approaches that of a good metallic mirror.

5. The external segments of the retinal rods of cartilaginous fishes which have well-developed tapeta are only about half as long as those of other fish living in the same environment, and the retinal optical densities of photosensitive pigments in these fish are only about a half of those of fish without reflecting tapeta.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barlow, H. B., 1956. Purkinje shift and retinal noise. Nature, Lond., Vol. 179, pp. 255–6.CrossRefGoogle Scholar
Bateson, W., 1890. The sense-organs and perceptions of fishes, with remarks on the supply of bait. J. mar. biol. Ass. U.K., N.S., Vol. 1, pp. 225–56.Google Scholar
Berger, E., 1883. Beiträge zur Anatomie des Sehorganes der Fische. Morph. Jb., Bd. 8, pp. 97168.Google Scholar
Berland, B., 1961. Copepod Ommatokoita elongata (Grant) in the eyes of the Greenland shark—a possible cause [case] of mutual dependence. Nature, Lond., Vol. 191, pp. 829–30.Google Scholar
Bigelow, H. B. & Schroeder, W. C., 1948. Fishes of the Western North Atlantic. Mem. Sears Fdn mar. Res., No. 1, Pt. 1, 576 pp.Google Scholar
Brauer, A., 1908. Die Tiefsee-Fische. Wiss. Ergebn. ‘Valdivia’, Bd. 15, Lief. 2, II (Anat. Teil), 266 pp.Google Scholar
Brücke, E., 1845. Anatomische Untersuchungen über die sogennanten leuchtenden Augen bei den Wirbelthieren. Arch. Anat. Physiol. Lpz., Jahrg. 1845, pp. 387406.Google Scholar
Denton, E. J., 1956. The responses of the pupil of Gekko gekko to external light stimulus. J. gen. Physiol., Vol. 40, pp. 201–16.Google Scholar
Denton, E. J., 1959. The contributions of the orientated photosensitive and other molecules to the absorption of whole retina. Proc. Roy. Soc. B, Vol. 150, pp. 7894.Google Scholar
Denton, E. J. & Nicol, J. A. C., 1962. Why fishes have silvery sides; and a method of measuring reflectivity. J. Physiol., Vol. 165, pp. 1315P.Google Scholar
Denton, E. J. & Shaw, T. I., 1963. The visual pigments of some deep-sea elasmobranchs. J. mar. biol. Ass. U.K., Vol. 43, pp. 6570.Google Scholar
Denton, E. J. & Walker, M. A., 1958. The visual pigment of the conger eel. Proc. Roy. Soc. B, Vol. 148, pp. 257–69.Google ScholarPubMed
Denton, E. J. & Warren, F. J., 1957. The photosensitive pigments in the retinae of deep-sea fish. J. mar. biol. Ass. U.K., Vol. 36, pp. 651–62.Google Scholar
Denton, E. J. & Wyllie, J. H., 1955. Study of the photosensitive pigments in the pink and green rods of the frog. J. Physiol., Vol. 127, pp. 81–9.Google Scholar
Dowling, J. E., 1960. Chemistry of visual adaptation in the rat. Nature, Lond., Vol. 188, pp. 114–18.CrossRefGoogle ScholarPubMed
Dowling, J. E. & Wald, G., 1960. The biological function of vitamin A acid. Proc. nat. Acad. Sci., Wash., Vol. 46, pp. 587608.CrossRefGoogle ScholarPubMed
Ford, E., 1921. A contribution to our knowledge of the life-histories of the dogfishes landed at Plymouth. J. mar. biol. Ass. U.K., Vol. 12, pp. 468505.CrossRefGoogle Scholar
Franz, V., 1905. Zur Anatomie, Histologie und funktionellen Gestaltung des Selachierauges. Jena. Z. Naturw., Bd. 40, pp. 697840.Google Scholar
Franz, V., 1913. Sehorgan (Choroidea, Selachier). In Lehrbuch vergl. mikr. Anat. Wirbeltiere, edited by A., Oppel. Teil 7, pp. 166–9. Jena: Fischer.Google Scholar
Franz, V., 1931. Die Akkommodation des Selachierauges und seine Abblendungsapparate, nebst Befunden an der Retina. Zool. Jahrb. Abt. 3 (Allg. Zool.), Bd. 49, pp. 323462.Google Scholar
Franz, V., 1934. Vergleichende Anatomie des Wirbeltierauges. Plagiostomen. In Handbuch vergl. Anat. Wirbeltiere, edited by L., Bolk, E., Goppert, E., Kallius & W., Lubosch. Bd. 2, 2. Hälfte, pp. 1009–23. Berlin and Vienna: Urban u. Schwarzenberg.Google Scholar
Gilbert, P. W., 1961. The visual apparatus of sharks and its probable role in predation. Abstr. Symp. Papers Tenth Pacif. Sci. Congr. (Honolulu), 1961, pp. 176–7.Google Scholar
Gilbert, P. W., 1962. The behavior of sharks. Sci. Amer., Vol. 207, No. 1, pp. 60–8.Google Scholar
Gunter, R., Harding, H. G. W. & Stiles, W. S., 1951. Spectral reflexion factor of the cat's tapetum. Nature, Lond., Vol. 168, pp. 293–4.Google Scholar
Hagins, W. A. & Rushton, W. A. H., 1953. The measurement of rhodopsin in the decerebrate albino rabbit. J. Physiol., Vol. 120, 61P.Google Scholar
Helmholtz, H., 1867. Optique Physiologique, pp. 229–30. Paris: Masson et Fils.Google Scholar
Hess, C. Von, 1913. Gesichtsinn. Tapetum. In Winterstein's Handbuch vergl. Physiol., Bd. 4, pp. 730–17.Google Scholar
Hesse, R., 1929. Dämmerungstiere. In Handbuch norm. path. Physiol., edited by A., Betheet al., Bd. 12, Heft 1, Receptionsorgan. II, Photoreceptoren, I. Teil, pp. 714–9. Berlin: Springer.Google Scholar
Jenkins, F. A. & White, H. E., 1937. Fundamentals of Physical Optics. 1st ed., p. 399. New York and London: McGraw-Hill.Google Scholar
Le Grand, Y., 1950. Optique Physiologique. T. 2. Lumière et Couleurs. 490 pp. Paris: Éditions de la ‘Revue d'Optique’.Google Scholar
Le Grand, Y., 1952. Optique Physiologique. T. 1. La Dioptrique de l'Oeil et sa Correction. 2nd ed. 372 pp. Paris: Editions de la‘Revue d'Optique’.Google Scholar
Lewis, D. M., 1957. Regeneration of rhodopsin in the albino rat. J. Physiol., Vol. 136, pp. 624–31.Google Scholar
Munz, F. W., 1958. Photosensitive pigments from the retinae of certain deep-sea fishes. J. Physiol., Vol. 140, pp. 220–35.Google Scholar
Nicholls, J. V. V., 1933. The effect of temperature variations and of certain drugs upon the gastric motility of elasmobranch fishes. Contr. Canad. Biol, Vol. 7, pp. 447–63.Google Scholar
Nicol, J. A. C., 1958. Observations on luminescence in pelagic animals. J. mar. biol. Ass. U.K., Vol. 37, pp. 705–52.CrossRefGoogle Scholar
Nicol, J. A. C., 1961a. Physiology of marine organisms. In Report of the Council. J. mar. biol. Ass. U.K., Vol. 41, p. 481.Google Scholar
Nicol, J. A. C., 1961b. The tapetum in Scyliorhinus canicula. J. mar. biol. Ass. U.K., Vol. 41, pp. 271–7.Google Scholar
Norman, J. R. & Fraser, F. C., 1948. Giant Fishes, Whales and Dolphins. 376 pp. London: Putnam.Google Scholar
Pirie, A. & Simpson, D. M., 1946. Preparation of a fluorescent substance from the eye of the dogfish (Squalus acanthias). Biochem. J., Vol. 40, pp. 1420.Google Scholar
Pumphrey, R. J., 1961. Concerning vision. Pp. 193–207, in The Cell and the Organism. Essays presented to Gray, Sir James, edited by Ramsay, J. A. & Wigglesworth, V. B., 350 pp. Cambridge University Press.Google Scholar
Rochon-Duvigneaud, A., 1943. Les Yeux et la Vision des Vertébrés. 719 pp. Paris: Masson.Google Scholar
Rushton, W. A. H., 1956. The rhodopsin density in the human rods. J. Physiol., Vol. 134, pp. 3046.CrossRefGoogle ScholarPubMed
Rushton, W. A. H., 1961. Dark-adaptation and the regeneration of rhodopsin. J. Physiol., Vol. 156, pp. 166–78.CrossRefGoogle ScholarPubMed
Sidman, R. L., 1957. The structure and concentration of solids in photoreceptor cells studied by refractometry and interference microscopy. J. biophys. biochem. Cytol., Vol. 3, pp. 1530.CrossRefGoogle ScholarPubMed
Verrier, M.-L., 1930. Contribution a l'étude de la vision chez les Sélaciens. Ann. Sci. nat. Zool., T. 13, pp. 554.Google Scholar
Wald, G., 1955. The photoreceptor process in vision. Amer. J. Ophthal., Vol. 40, pp. 1841.Google Scholar
Wald, G., Brown, P. K. & Brown, P. S., 1957. Visual pigments and depths of habitat of marine fishes. Nature, Lond., Vol. 180, pp. 969–71.Google Scholar
Wald, G., Brown, P. K. & Kennedy, D., 1957. The visual system of the alligator. J. gen. Physiol., Vol. 40, pp. 703–13.Google Scholar
Walls, G. L., 1942. The Vertebrate Eye and its Adaptive Radiation. Bull No. 19, Cranbrook Inst. Sci., Bloomfield Hills, Michigan.Google Scholar
Walsh, I. W. T., 1958. Photometry. 544 pp. London: Constable.Google Scholar
Weale, R. A., 1953. The spectral reflectivity of the cat's tapetum measured in situ. J. Physiol., Vol. 119, pp. 3042.Google Scholar