Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-20T11:07:50.763Z Has data issue: false hasContentIssue false

The Atmospheres of Extrasolar Super-Earths

Published online by Cambridge University Press:  01 May 2008

Eliza Miller-Ricci
Affiliation:
Harvard Smithsonian Center for Astrophysics60 Garden St., Cambridge, MA 02138 email: emillerricci@cfa.harvard.edu, sasselov@cfa.harvard.edu
Sara Seager
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Department of Physics, Massachusetts Institute of Technology54-1626, 77 Massachusetts Ave., Cambridge, MA 02139 email: seager@mit.edu
Dimitar Sasselov
Affiliation:
Harvard Smithsonian Center for Astrophysics60 Garden St., Cambridge, MA 02138 email: emillerricci@cfa.harvard.edu, sasselov@cfa.harvard.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Extrasolar super-Earths (1-10 M) are likely to exist with a wide range of atmospheres. While a number of these planets have already been discovered through radial velocities and microlensing, it will be the discovery of the first transiting super-Earths that will open the door to a variety of follow-up observations aimed at characterizing their atmospheres. Super-Earths may fill a large range of parameter space in terms of their atmospheric composition and mass. Specifically, some of these planets may have high enough surface gravities to be able to retain large hydrogen-rich atmosphseres, while others will have lost most of their hydrogen to space over the planet's lifetime, leaving behind an atmosphere more closely resembling that of Earth or Venus. The resulting composition of the super-Earth atmosphere will therefore depend strongly on factors such as atmospheric escape history, outgassing history, and the level of stellar irradiation that it receives. Here we present theoretical models of super-Earth emission and transmission spectra for a variety of possible outcomes of super-Earth atmospheric composition ranging from hydrogen-rich to hydrogen-poor. We focus on how observations can be used to differentiate between the various scenarios and constrain atmospheric composition.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Baglin, A. 2003, Advances in Space Research, 31, 345CrossRefGoogle Scholar
Barge, P., Baglin, A., Auvergne, M., Buey, J.-T., Catala, C., Michel, E., Weiss, W. W., Deleuil, M., Jorda, L., Moutou, C., & COROT Team. 2005, in SF2A-2005: Semaine de l'Astrophysique Francaise, ed. Casoli, F., Contini, T., Hameury, J. M., & Pagani, L., 193Google Scholar
Basri, G., Borucki, W. J., & Koch, D. 2005, New Astronomy Review, 49, 478CrossRefGoogle Scholar
Beaulieu, J.-P., Bennett, D. P., Fouque, P., Williams, A., Dominik, M., Jorgensen, U. G., Kubas, D., Cassan, A., Coutures, C., Greenhill, J., & et al. 2006, Nature, 439, 437CrossRefGoogle Scholar
Borucki, W., Koch, D., Boss, A., Dunham, E., Dupree, A., Geary, J., Gilliland, R., Howell, S., Jenkins, J., Kondo, Y., and 3 coauthors, 2004, in ESA SP-538: Stellar Structure and Habitable Planet Finding, ed. Favata, F., Aigrain, S., A&A. Wilson, 177182Google Scholar
Brodbeck, C., Nguyen, V.-T., Bouanich, J.-P., Boulet, C., Jean-Louis, A., Bezard, B., & deBergh, C. Bergh, C. 1991, J. Geophys. Res., 96, 1749Google Scholar
Chevallier, L., Pelkowski, J., & Rutily, B. 2007, Journal of Quantitative Spectroscopy and Radiative Transfer, 104, 357CrossRefGoogle Scholar
Ehrenreich, D., Tinetti, G., LecavelierDes Etangs, A. Des Etangs, A., Vidal-Madjar, A., & Selsis, F. 2006, A&A, 448, 379Google Scholar
Elkins-Tanton, L. & Seager, S. 2008, ApJ, submittedGoogle Scholar
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661CrossRefGoogle Scholar
Freedman, R. S., Marley, M. S., & Lodders, K. 2007, ArXiv e-prints, 706Google Scholar
Gardner, J. P., Mather, J. C., Clampin, M., Doyon, R., Greenhouse, M. A., Hammel, H. B., Hutchings, J. B., Jakobsen, P., Lilly, S. J., Long, K. S., and 13 coauthors, 2006, Space Science Reviews, 123, 485CrossRefGoogle Scholar
Hansen, B. M. S. 2007, ApJS, submittedCrossRefGoogle Scholar
Hunten, D. M., Donahue, T. M., Walker, J. C. G., & Kasting, J. F. 1989, Escape of atmospheres and loss of water (Origin and Evolution of Planetary and Satellite Atmospheres), 386–422CrossRefGoogle Scholar
Nutzman, P. & Charbonneau, D. 2007, ArXiv e-prints, 709, 345Google Scholar
Partridge, H. & Schwenke, D. W. 1997, J. Chem. Phys., 106, 4618CrossRefGoogle Scholar
Rivera, E. J., Lissauer, J. J., Butler, R. P., Marcy, G. W., Vogt, S. S., Fischer, D. A., Brown, T. M., Laughlin, G., & Henry, G. W. 2005, ApJ, 634, 625CrossRefGoogle Scholar
Rothman, L. S., Jacquemart, D., Barbe, A., Benner, D. C., Birk, M., Brown, L. R., Carleer, M. R., Chackerian, C., Chance, K., Coudert, , and 20 coauthors, 2005, Journal of Quantitative Spectroscopy and Radiative Transfer, 96, 139CrossRefGoogle Scholar
Seager, S., Kuchner, M., Hier-Majumder, C., & Militzer, B. 2007, ArXiv e-prints, 707Google Scholar
Seager, S., Whitney, B. A., & Sasselov, D. D. 2000, ApJ, 540, 504CrossRefGoogle Scholar
Sotin, C., Grasset, O., & Mocquet, A. 2007, Icarus, 191, 337CrossRefGoogle Scholar
Udry, S., Bonfils, X., Delfosse, X., Forveille, T., Mayor, M., Perrier, C., Bouchy, F., Lovis, C., Pepe, F., Queloz, D., & Bertaux, J. 2007, ArXiv e-prints, 704Google Scholar
Valencia, D., Sasselov, D. D., & O'Connell, R. J. 2007, ArXiv e-prints, 704Google Scholar
White, W. B., Johnson, S. M., & Dantzig, G. B. 1958, J. Chem. Phys., 28, 751CrossRefGoogle Scholar