Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-28T14:34:01.743Z Has data issue: false hasContentIssue false

Spatial ecology of hatchling water pythons (Liasis fuscus) in tropical Australia

Published online by Cambridge University Press:  01 March 2009

Lígia Pizzatto*
Affiliation:
School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006Australia
Thomas Madsen
Affiliation:
School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522Australia
Gregory P. Brown
Affiliation:
School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006Australia
Richard Shine
Affiliation:
School of Biological Sciences, A08, University of Sydney, Sydney, NSW 2006Australia

Abstract:

Young snakes are rarely seen in the field and little is known about their habits, mostly because they are too small for radio-telemetry (the primary method for studying snake spatial ecology). However, the offspring of some larger species can be fitted with transmitters and we investigated the spatial ecology and habitat use of ten hatchling water pythons (Liasis fuscus: Pythonidae) in the floodplain of the Adelaide River, tropical Australia. Patterns of habitat use in the late wet season and during the dry season were similar to those of adults tracked in the same vicinity in an earlier study. Soon after release the young snakes moved to the floodplain, avoiding pasture areas. Diurnal refuge sites were typically in the base of grass clumps or below the soil surface, especially in sites with thick vegetation and deep, wide soil cracks. Adult snakes are more sedentary but move longer absolute distances (mean ± SE = 252 ± 50 m wk−1) than hatchlings (66.3 ± 41 m wk−1). However, hatchling snakes moved longer distances relative to body size (84.4 ± 1.1 body lengths wk−1) than did the previously studied adults (66.0 ± 1.1 body lengths wk−1). Mean and minimum body temperatures of the hatchlings were correlated with mean and minimum air temperatures, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ASPLUND, K. K. 1974. Body size and habitat utilization in Whiptail lizards (Cnemidophorus). Copeia 1974:695703.CrossRefGoogle Scholar
BROWN, G. P., SHINE, R. & MADSEN, T. 2005. Spatial ecology of slatey-grey snakes (Stegonotus cucullatus, Colubridae) on a tropical Australian floodplain. Journal of Tropical Ecology 21:605612.CrossRefGoogle Scholar
BROWN, W. S. & MACLEAN, F. M. 1983. Conspecific scent trailing by newborn timber rattlesnakes, Crotalus horidus. Herpetologica 39:430436.Google Scholar
BURGER, J. 1989. Following of conspecific and avoidance of predator chemical cues by pine snakes (Pituophis melanoleucus). Journal of Chemical Ecology 15:799806.CrossRefGoogle ScholarPubMed
CONANT, R. & COLLINS, J. T. 1998. A field guide to reptiles and amphibians of Eastern & Central North America. (Third edition). Peterson Field Guide Series. Houghton Mifflin Company, New York. 514 pp.Google Scholar
COGGER, H. G. 1992. Reptiles and amphibians of Australia. (Fifth edition). Reed Books, Sydney. 752 pp.Google Scholar
GARCÍA, M. A., PÉREZ-BUITRAGO, N., ALVAREZ, A. O. & TOLSON, P. J. 2007. Survival, dispersal and reproduction of headstarted Mona Island iguanas, Cyclura cornuta stejnegeri. Applied Herpetology 4:357363.Google Scholar
GLAUDAS, X., ANDREWS, K. M., WILLSON, J. D. & GIBBONS, J. W. 2007. Migration patterns in a population of cottonmouths (Agkistrodon piscivorus) inhabiting an isolated wetland. Journal of Zoology 271:119124.CrossRefGoogle Scholar
GRAVES, B. M. & HALPERN, M. 1988. Neonate plains garter snakes (Thamnophis radix) are attracted to conspecific skin extracts. Journal of Comparative Psychology 102:251253.CrossRefGoogle ScholarPubMed
GROOM, M. J., MEFFE, G. K. & CAROLL, C. R. 2006. Principles of conservation biology. (Third edition). Sinauer Associates, Sunderland. 699 pp.Google Scholar
HARESTAD, A. S. & BUNNEL, F. L. 1979. Home range and body weight – a reevaluation. Ecology 60:389402.CrossRefGoogle Scholar
HEATWOLE, H. 1977. Habitat selection in reptiles. Pp. 137155 in Gans, C. & Tinkle, D. W. (ed). Biology of the Reptilia: ecology and behavior, Volume 7. Academic Press, London.Google Scholar
HJELM, J., PERSSON, L. & CHRISTENSEN, B. 2000. Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability. Oecologia 122:190199.CrossRefGoogle ScholarPubMed
IMANSYAH, M. J., JESSOP, T. S., CIOFI, C. & AKBAR, Z. 2008. Ontogenetic differences in the spatial ecology of immature Komodo dragons. Journal of Zoology 274:107115.CrossRefGoogle Scholar
IRSCHICK, D. J., MACRINI, T. E., KORUBA, S. & FORMAN, J. 2000. Ontogenetic differences in morphology, habitat use, behavior, and sprinting capacity in two West Indian Anolis lizards. Journal of Herpetology 34:444451.CrossRefGoogle Scholar
JELLEN, B. C. & KOWALSKI, M. J. 2007. Movement and growth of neonate eastern massasaugas (Sistrurus catenatus). Copeia 2007:9941000.CrossRefGoogle Scholar
KEREN-ROTEM, T., BOUSKILA, A. & GEFFEN, E. 2006. Ontogenetic habitat shift and risk of cannibalism in the common chameleon (Chamaeleo chamaeleon). Behavioral Ecology and Sociobiology 59:723731.CrossRefGoogle Scholar
KING, M. B. & DUVALL, D. 1990. Prairie rattlesnake seasonal migrations: episodes of movement, vernal foraging, and sex differences. Animal Behavior 39:924935.CrossRefGoogle Scholar
LANKFORD, T. E. & TARGETT, T. E. 2001. Low-temperature tolerance of age-0 Atlantic croakers: recruitment implications for U.S. Mid-Atlantic estuaries. Transactions of the American Fisheries Society 130:236249.2.0.CO;2>CrossRefGoogle Scholar
MACARTNEY, J. M., GREGORY, P. T. & LARSEN, K. W. 1988. A tabular survey of data on movements and home ranges. Journal of Herpetology 22:6173.CrossRefGoogle Scholar
MADSEN, T. & SHINE, R. 1996a. Seasonal migrations of predators and prey: pythons and rats in northern Australia. Ecology 77:149156.CrossRefGoogle Scholar
MADSEN, T. & SHINE, R. 1996b. Determinants of reproductive output in female water pythons (Liasis fuscus, Pythonidae). Herpetologica 52:146159.Google Scholar
MADSEN, T. & SHINE, R. 1998. Spatial subdivision within a population of tropical pythons (Liasis fuscus) in a superficially homogeneous habitat. Australian Journal of Ecology 23:340348.CrossRefGoogle Scholar
MADSEN, T. & SHINE, R. 1999. Life history consequences of nest-site variation in tropical pythons (Liasis fuscus). Ecology 80:989997.CrossRefGoogle Scholar
MADSEN, T. & SHINE, R. 2000. Energy versus risk: costs of reproduction in free-ranging pythons in tropical Australia. Austral Ecology 25:670675.Google Scholar
PÉREZ-BUITRAGO, N. & SABAT, A. 2007. Natal dispersal, home range and habitat use of hatchlings of the Mona Island iguana (Cyclura cornuta stejnegeri). Applied Herpetology 4:365376.Google Scholar
PIKE, D. A., PIZZATTO, L., PIKE, B. A. & SHINE, R. 2008. Estimating survival rates of uncatchable animals: the myth of high juvenile mortality in reptiles. Ecology 89:607611.CrossRefGoogle ScholarPubMed
PIZZATTO, L. & SHINE, R. 2008. The behavioral ecology of cannibalism in cane toads (Bufo marinus). Behavioral Ecology and Sociobiology 63:123133.CrossRefGoogle Scholar
SAZIMA, I. & MARTINS, M. 1990. Presas grandes e serpentes jovens: quando os olhos são maiores que a boca. Memórias do Instituto Butantan 53:7379.Google Scholar
SCHOENER, T. W. & SCHOENER, A. 1984. Intraspecific variation in home-range size in some Anolis lizards. Ecology 60:809823.Google Scholar
SEEBACHER, F. & ALFORD, R. A. 2002. Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). Journal of Herpetology 36:6975.CrossRefGoogle Scholar
SHINE, R. 1987. Intraspecific variation in thermoregulation, movements and habitat use by Australian blacksnakes, Pseudechis porphyriacus (Elapidae). Journal of Herpetology 3:165177.CrossRefGoogle Scholar
SHINE, R. 1993. Ecological studies on Australian pythons. Pp. 2940 in Uricheck, M. (ed.). Proceedings of the Fifteenth International Herpetological Symposium. International Herpetological Symposium Inc., Seattle.Google Scholar
SHINE, R. 2005. Life-history evolution in reptiles. Annual Review of Ecology and Systematics 36:2346.CrossRefGoogle Scholar
SHINE, R. & MADSEN, T. 1996. Is thermoregulation unimportant for most reptiles? An example using water pythons (Liasis fuscus) in tropical Australia. Physiological Zoology 69:252269.CrossRefGoogle Scholar
SHINE, R. & MADSEN, T. 1997. Prey abundance and predator reproduction: rats and pythons on a tropical Australian floodplain. Ecology 78:10781086.Google Scholar
SHINE, R., MADSEN, T., ELPHICK, M. J. & HARLOW, P. S. 1997. The influence of nest temperature and maternal brooding on hatchling phenotypes in water pythons. Ecology 78:17131720.CrossRefGoogle Scholar
SHINE, R., SUN, L. X., KEARNEY, M. & FITZGERALD, M. 2002. Why do juvenile Chinese pit-vipers (Gloydius shedaoensis) select arboreal ambush sites? Ethology 108:897910.CrossRefGoogle Scholar
SUN, L.-X., SHINE, R., ZHAO, D. & TANG, Z. 2001. Biotic and abiotic influences on activity patterns of insular pit-vipers (Gloydius shedaoensis, Viperidae) from north-eastern China. Biological Conservation 97:387398.CrossRefGoogle Scholar
WERNER, E. E. & GILLIAM, J. F. 1984. The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15:393425.CrossRefGoogle Scholar
WHITAKER, P. B. & SHINE, R. 2003. A radiotelemetric study of movements and shelter-site selection by free-ranging brownsnakes (Pseudonaja textilis, Elapidae). Herpetological Monographs 17:130144.CrossRefGoogle Scholar
WILSON, D., HEINSOHN, R. & LEGGE, S. 2006. Age- and sex-related differences in the spatial ecology of a dichromatic tropical python (Morelia viridis). Austral Ecology 31:577587.CrossRefGoogle Scholar
ZAR, J. H. 1999. Biostatistical analysis. (Fourth edition). Prentice Hall, New Jersey. 663 pp.Google Scholar