Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T02:56:26.441Z Has data issue: false hasContentIssue false

Protein folding

Published online by Cambridge University Press:  17 March 2009

George Némethy
Affiliation:
Department of Chemistry, Cornell University, Ithaca, New York 14853 (U.S.A.)
Harold A. Scheraga
Affiliation:
Department of Chemistry, Cornell University, Ithaca, New York 14853 (U.S.A.)

Extract

This review describes recent advances in studies on the stabilities of the three-dimensional structures of proteins and on the processes leading to the formation of these structures. The term ‘protein folding’ will be used here to denote the process of the conversion of an open polypeptide chain into the unique three-dimensional conformation of the native protein. Experimental and theoretical aspects of protein folding have been reviewed by anfinsen & Scheraga (1975). In the present article, we emphasize advances made since the writing of that review, together with a brief summary of the background of recent studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, R. J., Cavalli, L. & Pachler, K. G. R. (1966). Rotational isomersim. II. A calculation of the solvent dependence of the conformational equilibria in substituted ethanes and its application to N.M.R. spectra Molec. Phys. 11, 471–94.Google Scholar
Acharya, A. S. & Taniuchi, H. (1976). A study of renaturation of reduced hen egg white lysozyme. Enzymatically active intermediates formed during oxidation of the reduced protein. J. biol. Chem. 251, 6934–46.CrossRefGoogle ScholarPubMed
Acharya, A. S. & Taniuchi, H. (1977). Formation of four isomers of hen egg white lysozyme containing three native disulfide bonds and one open disulfide bond. Proc. natn. Acad. Sci., U.S.A. 74, 2362–6.CrossRefGoogle ScholarPubMed
Alden, R. A., Birktoft, J. J., Kraut, J., Robertus, J. D. & Wright, C. S. (1971). Atomic coordinates for subtilisin BPN' (or novo). Biochem. biophys. Res. Commun. 45, 337–44.CrossRefGoogle Scholar
Anderson, W. L. & Wetlaufer, D. B. (1976). The folding pathway of reduced lysozyme. J. biol. Chem. 251, 3147–53.CrossRefGoogle ScholarPubMed
Anfinsen, C. B. (1973). Principles that govern the folding of protein chains. Science, N.Y. 181, 223–30.CrossRefGoogle ScholarPubMed
Anfinsen, C. B. & Scheraga, H. A. (1975). Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 29, 205300.CrossRefGoogle ScholarPubMed
Argos, P. (1976). Prediction of the secondary structure of mouse nerve growth factor and its comparison with insulin. Biochem. biophys. Res. Commun. 70, 805–11.CrossRefGoogle ScholarPubMed
Argos, P. (1977). Secondary structure predictions of calcium-binding proteins. Biochemistry, N.Y. 16, 665–72.CrossRefGoogle ScholarPubMed
Argos, P., Schwarz, J. & Schwarz, J. (1976). An assessment of protein secondary structure prediction methods based on amino acid sequence. Biochim. biophys. Acta 439, 261–73.CrossRefGoogle ScholarPubMed
Argos, P., Rossmann, M. G. & Johnson, J. E. (1977). A four-helical super-secondary structure. Biochem. Biophys. Res. Commun. 75, 83–6.CrossRefGoogle ScholarPubMed
Arnone, A., Bier, C. J., Cotton, F. A., Day, V. W., Hazen, E. E. Jr, Richardson, D. C., Richardson, J. S., and in part, Yonath, A. (1971). A high resolution structure of an inhibitor complex of the extracellular nuclease of staphylococcus aureus. J. biol. Chem. 246, 2302–16.CrossRefGoogle ScholarPubMed
Balasubramanian, R. (1976). A new type of representation of dipeptide conformation. Biochem. J. 157, 769–71.CrossRefGoogle ScholarPubMed
Baldwin, R. L. (1975). Intermediates in protein folding reactions and the mechanism of protein folding. A. Rev. Biochem. 44, 453–75.CrossRefGoogle ScholarPubMed
Benz, F. W. & Roberts, G. C. K. (1975 a). Nuclear magnetic resonance studies of the unfolding of pancreatic ribonuclease. I. Thermal and acid unfolding. J. molec. Biol. 91, 345–65.CrossRefGoogle Scholar
Benz, F. W. & Roberts, G. C. K. (1975 b). Nuclear magnetic resonance studies of the unfolding of pancreatic ribonuclease. II. Unfolding by urea and guanidine hydrochloride. J. molec. Biol. 91, 367–87.CrossRefGoogle ScholarPubMed
Berendsen, H. J. C. (1975). Specific interactions of water with biopolymers. In Water, vol. 5 (ed. Franks, F.), pp. 293330. New York: Plenum Press.Google Scholar
Birktoft, J. J. & Blow, D. M. (1972). Structure of crystalline α-chymotrypsin. V. The atomic structure of tosyl-α-chymotrypsin at 2 Å resolution. J. molec. Biol. 68, 187240,CrossRefGoogle Scholar
Birktoft, J. J., Matthews, B. W. & Blow, D. M. (1969). Atomic coordinates for tosyl-α-chymotrypsin. Biochem. biophys. Res. Commun. 36, 131–7.CrossRefGoogle ScholarPubMed
Blake, C. C. F. (1974). Evolution of nucleotide-binding proteins. Nature, Lond. 250, 284–5.CrossRefGoogle Scholar
Blake, C. C. F. (1975). X-ray studies of glycolytic enzymes. Essay Biochem. 11, 3779.Google ScholarPubMed
Bleich, H. E., Cutnell, J. D., Day, A. R., Freer, R. J., Glasel, J. A. & McKelvy, J. F. (1976). Preliminary analysis of 1H and 13C spectral and relaxation behavior in methionine-enkephalin. Proc. natn. Acad. Sci., U.S.A. 73, 2589–93.CrossRefGoogle ScholarPubMed
Blundell, T. L. & Johnson, L. N. (1976). Protein Crystallography. New York: Academic Press.Google Scholar
Brandts, J. F., Halvorson, H. R. & Brennan, M. (1975). Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of protein residues. Biochemistry, N. Y. 14, 4953–63.CrossRefGoogle Scholar
Brant, D. A. (1972). Conformational analysis of biopolymers: conformational energy calculations. A. Rev. Biophys. Bioeng. 1, 369408.CrossRefGoogle ScholarPubMed
Brant, D. A. (1976). Conformational theory applied to polysaccharide structure. Q. Rev. Biophys. 9, 527–96.CrossRefGoogle ScholarPubMed
Brant, D. A. & Flory, P. J. (1965). The configuration of random polypeptide chains. II. Theory. J. Am. chem. Soc. 87, 2791–800.CrossRefGoogle Scholar
Brown, K. G., Erfurth, S. C., Small, E. W. & Peticolas, W. L. (1972). Conformationally dependent low-frequency motions of proteins by laser Raman spectroscopy. Proc. natn. Acad. Sci., U.S.A. 69, 1467–9.CrossRefGoogle ScholarPubMed
Buehner, M., Ford, G. C., Moras, D., Olsen, K. W. & Rossmann, M. G. (1974 a). Structure determination of crystalline lobster D-glyceraldehyde-3-phosphate dehydrogenase. J. molec. Biol. 82, 563–85.CrossRefGoogle ScholarPubMed
Buerner, M., Ford, G. C., Moras, D., Olsen, K. W. & Rossmann, M. G. (1974 b). Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase. J. molec. Biol. 90, 2549.CrossRefGoogle Scholar
Burgess, A. W. & Scheraga, H. A. (1975 a). Assessment of some problems associated with prediction of the three-dimensional structure of a protein from its amino-acid sequence. Proc. natn. Acad. Sci., U.S.A. 72, 1221–5.CrossRefGoogle ScholarPubMed
Burgess, A. W. & Scheraga, H. A. (1975 b). A hypothesis for the pathway of the thermally-induced unfolding of bovine pancreatic ribonuclease. J. theor. Biol. 53, 403–20.CrossRefGoogle ScholarPubMed
Burgess, A. W., Ponnuswamy, P. K. & Scheraga, H. A. (1974). Analysis of conformations of amino-acid residues and prediction of backbone topography in proteins. Israel Jnl. Chem. 12, 239–86.CrossRefGoogle Scholar
Burgess, A. W., Momany, F. A. & Scheraga, H. A. (1975 a). On the structure of thyrotropin releasing factor. Biopolymers 14, 2645–7.CrossRefGoogle Scholar
Burgess, A. W., Shipman, L. L. & Scheraga, H. A. (1975 b). A new approach to empirical intermolecular and conformational potential energy functions. II. Applications to crystal packing, rotational barriers, and conformational analysis. Proc. natn. Acad. Sci., U.S.A. 72, 854–8.CrossRefGoogle ScholarPubMed
Burgess, A. W., Weinstein, L. I., Gabel, D. & Scheraga, H. A. (1975 c). Immobilized carboxypeptidase A as a probe for studying the thermally induced unfolding of bovine pancreatic ribonuclease. Biochemistry, N. Y. 14, 197200.CrossRefGoogle ScholarPubMed
Burgess, A. W., Shipman, L. L., Nemenoff, R. A. & Scheraga, H. A. (1976). A new approach to empirical intermolecular and conformational potential energy functions. III. Application of EPEN to the conformational analysis of 1,2-disubstituted ethanes. J. Am. chem. Soc. 98, 23–9.CrossRefGoogle Scholar
Burnett, R. M., Darling, G. D., Kendall, D. S., Lequesne, M. E., Mayhew, S. G., Smith, W. W. & Ludwig, M. L. (1974). The structure of the oxidized form of clostridial flavodoxin at 1·9 Å resolution. Description of the flavin mononucleotide binding site. J. biol. Chem. 249, 4383–92.CrossRefGoogle Scholar
Careri, G. (1974). The fluctuating enzyme. In Quantum Statistical Mechanics in the Natural Sciences (ed. Kursunoglu, B., Mintz, S. L. and Widmayer, S. M.), pp. 1535. New York: Plenum Publishing Corp.CrossRefGoogle Scholar
Careri, G., Fasella, P. & Gratton, E. (1975). Statistical time events in enzymes: a physical assessment. CRC Crit. Rev. Biochem. 3, 141–64.CrossRefGoogle ScholarPubMed
Carter, C. W. Jr, Kraut, J., Freer, S. T., Xuong, N. H., Alden, R. A. & Bartsch, R. G. (1974). Two-angstrom crystal structure of oxidized chromatium high potential iron protein. J. biol. Chem. 249, 4212–25.CrossRefGoogle ScholarPubMed
Champness, J. N., Bloomer, A. C., Bricogne, G., Butler, P. J. G. & Klug, A. (1976). The structure of the protein disk of tobacco mosaic virus to 5 Å resolution. Nature, Lond. 259, 20–4.CrossRefGoogle Scholar
Chavez, L. G. Jr,& Scheraga, H. A. (1977). Immunological determination of the order of folding of portions of the molecule during air oxidation of reduced ribonuclease. Biochemistry, N. Y. 16, 1849–56.CrossRefGoogle ScholarPubMed
Chen, M. C. & Lord, R. C. (1976). Laser Raman spectroscopic studies of the thermal unfolding of ribonuclease A. Biochemistry, N.Y. 15, 1889–97.CrossRefGoogle ScholarPubMed
Chothia, C. (1973). Conformation of twisted β-pleated sheets in proteins. J. molec. Biol. 75, 295302.CrossRefGoogle ScholarPubMed
Chothia, C. (1974). Hydrophobic bonding and accessible surface area in proteins. Nature, Lond. 248, 338–9.CrossRefGoogle ScholarPubMed
Chothia, C. (1975). Structural invariants in protein folding. Nature, Lond. 254, 304–8.CrossRefGoogle ScholarPubMed
Chothia, C. (1976). The nature of the accessible and buried surfaces in proteins. J. molec. Biol. 105, 114.CrossRefGoogle ScholarPubMed
Chothia, C. & Janin, J. (1975). Principles of protein-protein recognition. Nature, Lond. 256, 705–8.CrossRefGoogle ScholarPubMed
Chothia, C., Wodak, S. & Janin, J. (1976). Role of subunit interfaces in the allosteric mechanism of hemoglobin. Proc. natn. Acad. Sci., U.S.A. 73, 3793–7.CrossRefGoogle ScholarPubMed
Chou, P. Y. & Fasman, G. D. (1974 a). Conformational parameters for amino acids in helical, π-sheet, and random coil regions calculated from proteins. Biochemistry, N. Y. 13, 211–22.CrossRefGoogle Scholar
Chou, P. Y. & Fasman, G. D. (1974 b). Prediction of protein conformation. Biochemistry, N.Y. 13, 222–45.CrossRefGoogle ScholarPubMed
Cohen, J. S. & Hayes, M. B. (1974). Nuclear magnetic resonance titration curves of histidine ring protons. J. biol. Chem. 249, 5472–7.CrossRefGoogle ScholarPubMed
Cooper, A. (1976). Thermodynamic fluctuations in protein molecules. Proc. natn. Acad. Sci., U.S.A. 73, 2740-I.CrossRefGoogle ScholarPubMed
Crawford, J. L., Lipscomb, W. N. & Schellman, C. G. (1973). The reverse turn as a polypeptide conformation in globular proteins. Proc. natn. Acad. Sci., U.S.A. 70, 538–42.CrossRefGoogle ScholarPubMed
Creighton, T. E. (1974 a). Renaturation of the reduced bovine pancreatic trypsin inhibitor. J. molec. Biol. 87, 563–77.CrossRefGoogle ScholarPubMed
Creighton, T. E. (1974 b). Intermediates in the refolding of reduced pancreatic trypsin inhibitor. J. molec. Biol. 87, 579602.CrossRefGoogle ScholarPubMed
Creighton, T. E. (1974 c). The single-disulphide intermediates in the refolding of reduced pancreatic trypsin inhibitor. J. molec. Biol. 87, 603–24.CrossRefGoogle ScholarPubMed
Creighton, T. E. (1974 d). Refolding of the reduced pancreatic trypsin inhibitor. In Peptides, Polypeptides and Proteins (ed. Blout, E. R., Bovey, F. A., Goodman, M. and Lotan, N.), pp.201–16. NewYork: John Wiley and Sons.Google Scholar
Creighton, T. E. (1975 a). The two-disulphide intermediates and the folding pathway of reduced pancreatic trypsin inhibitor. J. molec. Biol. 95, 167–99.CrossRefGoogle ScholarPubMed
Creighton, T. E. (1975 b). Interactions between cysteine residues as probes of protein conformation: the disuiphide bond between Cys-14 and Cys–38 of the pancreatic trypsin inhibitor. J. molec. Biol. 96, 767–76.CrossRefGoogle ScholarPubMed
Creighton, T. E. (1975 c). Reactivities of the cysteine residues of the reduced pancreatic trypsin inhibitor. J. molec. Biol. 96, 777–82.CrossRefGoogle ScholarPubMed
Crippen, G. M. (1974). Topology of globular proteins. J. theor. Biol. 45, 327–38.CrossRefGoogle ScholarPubMed
Crippen, G. M. (1975 a). Topology of globular proteins. II. J. theor. Biol. 51, 495500.CrossRefGoogle ScholarPubMed
Crippen, G. M. (1975 b). Global optimization and polypeptide conformation. Jnl. Comput. Phys. 18, 224–31.CrossRefGoogle Scholar
Crippen, G. M. (1977 a). A statistical approach to the calculation of conformation of proteins. I. Theory. Macromolecules 10, 21–5.CrossRefGoogle Scholar
Crippen, G. M. (1977 b). A statistical approach to the calculation of conformation of proteins. 2. The reoxidation of reduced trypsin inhibitor. Macromolecules 10, 25–8.CrossRefGoogle Scholar
Crippen, G. M. & Scheraga, H. A. (1969). Minimization of polypeptide energy. VIII. Application of the deflation technique to a dipeptide. Proc. natn. Acad. Sci., U.S.A. 64, 42–9.CrossRefGoogle Scholar
Crippen, G. M. & Scheraga, H. A. (1971 a). Minimization of polypeptide energy. X. A global search algorithm. Archs Biochem. Biophys. 144, 453–61.CrossRefGoogle Scholar
Crippen, G. M. & Scheraga, H. A. (1971 b). Minimization of polypeptide energy. XI. The method of gentlest ascent. Archs Biochem. Biophys. 144, 462–6.CrossRefGoogle ScholarPubMed
crippen, G. M. & Scheraga, H. A. (1973). Minimization of polypeptide energy. XII. The methods of partial energies and cubic subdivision. Jnl Comput. Phys. 12, 491–7.CrossRefGoogle Scholar
Daniel, W. E. Jr, Morrisett, J. D., Harrison, J. H., Dearman, H. H. & Hiskey, R. G. (1973). Spin-labeled ribonuclease A. Selective incorporation of a nitroxide spin label sensitive to active-center geometry. Biochemistry, N.Y. 12, 4918–23.CrossRefGoogle ScholarPubMed
Davies, D. R., Padlan, E. A. & Segal, D. M. (1975). Three-dimensional structure of immunoglobulins. A. Rev. Biochem. 44, 639–67.CrossRefGoogle ScholarPubMed
Deisenhofer, J. & Steigemann, W. (1975). Crystallographic refinement of the structure of bovine pancreactic trypsin inhibitor at 1·5 Å resolution. Acta crystallogr. B31, 238–50.CrossRefGoogle Scholar
Diamond, R. (1974). Real-space refinement of the structure of hen egg-white lysozyme. J. molec. Biol. 82, 371–91.CrossRefGoogle ScholarPubMed
Dickerson, R. E. (1964). X-ray analysis and protein structure. In The Proteins, 2nd edn, vol. II, (ed. Neurath, H.), pp. 603778. New York: Academic Press.Google Scholar
Dickerson, R. E. (1972). X-ray studies of protein mechanisms. Ann. Rev. Biochem. 41, 815–42.CrossRefGoogle ScholarPubMed
Dickerson, R. E., Timkovich, R. & Almassy, R. J. (1976). The cytochrome fold and the evolution of bacterial energy metabolism. J. molec. Biol. 100, 473–91.CrossRefGoogle ScholarPubMed
Donzel, B., Rivier, J. & Goodman, M. (1974). Conformational studies on the hypothalamic thyrotropin releasing factor and related compounds by 1H nuclear magnetic resonance spectroscopy. Biopolymers 13, 2631–47.CrossRefGoogle Scholar
Drenth, J., Jansonius, J. N., Koekoek, R. & Wolthers, B. G. (1971). The structure of papain. Adv. Protein Chem. 25, 79115.CrossRefGoogle ScholarPubMed
Dunfield, L. G., Burgess, A. W. & Scheraga, H. A. (1977). Energy parameters in polypeptides. VIII. Empirical potential energy algorithm for the conformational analysis of large molecules. J. Phys. Chem. (to be submitted).Google Scholar
Dunn, J. B. R. & Klotz, I. M. (1975). A two-dimensional representation of protein structures. Archs Biochem. Biophys. 167, 615–26.CrossRefGoogle ScholarPubMed
Dygert, M., , N. & Scheraga, H. A. (1975). Use of a symmetry condition to compute the conformation of Gramicidin S. Macromolecules 8, 750–61.CrossRefGoogle ScholarPubMed
Edelman, G. M. & Gall, W. E. (1969). The antibody problem. A. Rev. Biochem. 38, 415–66.CrossRefGoogle ScholarPubMed
Edelman, G. M., Cunningham, B. A., Reeke, G. N. Jr, Becker, J. W., Waxdal, M. J. & Wang, J. L. (1972). The covalent and three-dimensional structure of concanavalin A. Proc. natn. Acad. Sci., U.S.A. 69, 2580–4.CrossRefGoogle ScholarPubMed
Eklund, H., Brandfn, C.-I. & Jörnvall, H. (1976). Structural comparisons of mammalian yeast and bacillar alcohol dehydrogenases. J. molec. Biol. 102, 6173.CrossRefGoogle ScholarPubMed
Endres, G. F., Swenson, M. K. & Scheraga, H. A. (1975). Structural aspects of thrombin specificity. Archs Biochem. Biophys. 168, 180–7.CrossRefGoogle ScholarPubMed
Englander, S. W. (1975). Measurement of structural and free energy changes in hemoglobin by hydrogen exchange methods. Ann. N.Y. Acad. Sci. 244, 1027.CrossRefGoogle ScholarPubMed
Epand, R. M. & Scheraga, H. A. (1968). The influence of long-range interactions on the structure of myoglobin. Biochemistry, N.Y. 7, 2864–72.CrossRefGoogle ScholarPubMed
Fasman, G. D., Chou, P. Y. & Adler, A. J. (1976). Prediction of the conformation of the histones. Biophys. J. 16, 1201–38.CrossRefGoogle ScholarPubMed
Fermi, G. (1975). Three-dimensional Fourier synthesis of human deoxyhaemoglobin at 2·5 Å resolution: refinement of the atomic model. J. molec. Biol. 97, 237–56.CrossRefGoogle ScholarPubMed
Finkelstein, A. V. (1977). Theory of protein molecule self-organization. A calculating method for the probabilities of the secondary structure formation in an unfolded protein chain. Biopolymers 16, 525–9.CrossRefGoogle Scholar
Finkelstein, A. V. & Ptitsyn, O. B. (1971). Statistical analysis of the correlation among amino acid residues in helical, β-structural and non-regular regions of globular proteins. J. molec. Biol. 62, 613–24.CrossRefGoogle Scholar
Finkelstein, A. V. & Ptitsyn, O. B. (1976). A theory of protein molecule self-organization. IV. Helical and irregular local structures of unfolded protein chains. J. molec. Biol. 103, 1524.CrossRefGoogle ScholarPubMed
Finkelstein, A. V. & Ptitsyn, O. B. (1977). Theory of protein molecule selforganization. I. Thermodynamic parameters of local secondary structures in the unfolded protein chain. Biopolymers 16, 469–95.CrossRefGoogle ScholarPubMed
Finkelstein, A. V., Kozitsyn, S. A. & Ptitsyn, O. B. (1975). Prediction of the three-dimensional structure for ribosomal protein L 25. FEBS Lett. 60, 137–40.CrossRefGoogle Scholar
Finkelstein, A. V., Ptitsyn, O. B. & Kozitsyn, S. A. (1977). Theory of protein molecule self-organization. II. A comparison of calculated thermodynamic parameters of local secondary structures with experiments. Biopolymers 16, 497524.CrossRefGoogle Scholar
Fletcher, R. (1970). A new approach to variable metric algorithms. Computer J. 13, 317–22.CrossRefGoogle Scholar
Fletterick, R. J. & Wyckoff, H. W. (1975). Preliminary refinement of protein coordinates in real space. Acta crystallogr., A 31, 698700.CrossRefGoogle Scholar
Flory, P. J. (1969). Statistical Mechanics of Chain Molecules, pp. 249–55. New York: Interscience.Google Scholar
Ford, L. O., Johnson, L. N., Machin, P. A., Phillips, D. C. & Tjian, R. (1974). Crystal structure of a lysozyme-tetrasaccharide lactone complex. J. molec. Biol. 88, 349–71.CrossRefGoogle ScholarPubMed
Forsythe, K. H. & Hopfinger, A. J. (1973). The influence of solvent on the secondary structures of poly(L–alanine) and poly(L–proline). Macromolecules 6, 423–37.CrossRefGoogle Scholar
Franks, F. & Eagland, D. (1975). The role of solvent interactions in protein conformation. CRC Crit. Rev. Biochem. 3, 165219.CrossRefGoogle ScholarPubMed
Freer, S. T., Alden, R. A., Carter, C. W. Jr & Kraut, J. (1975). Crystallographic structure refinement of Chromatium high potential iron protein at two angstroms resolution. J. biol. Chem. 250, 4654.CrossRefGoogle ScholarPubMed
Furie, B., Schechter, A. N., Sachs, D. H. & Anfinsen, C. B. (1975). Animmunological approach to the conformational equilibrium of staphylococcal nuclease. J. molec. Biol. 92, 497506.CrossRefGoogle Scholar
Gabel, D., Rasse, D. & Scheraga, H. A. (1976). Search for low energy conformations of a neurotoxic protein by means of predictive rules, tests for hard-sphere overlaps, and energy minimization. Int. J. Peptide & Protein Res. 8, 237–52.CrossRefGoogle ScholarPubMed
Garbay-Jaureguiberry, C., Roques, B. P., Oberlin, R., Anteunis, M. & Lala, A. K. (1976). Preferential conformation of the endogenous opiate-like pentapeptide met-enkephalin in DMSO-d6 solution determined by high field 1H NMR. Biochem. biophys. Res. Commun. 71, 558–65.CrossRefGoogle Scholar
Gelin, B. R. & Karplus, M. (1975). Sidechain torsional potentials and motion of amino acids in proteins: bovine pancreatic trypsin inhibitor. Proc. natn. Acad. Sci., U.S.A. 72, 2002–6.CrossRefGoogle Scholar
Gelin, B. R. & Karplus, M. (1977). Mechanism of tertiary structural change in hemoglobin. Proc. natn. Acad. Sci., U.S.A. 74, 801–5.CrossRefGoogle ScholarPubMed
Gibson, K. D. & Scheraga, H. A. (1967). Minimization of polypeptide energy. I. Preliminary structures of bovine pancreatic ribonuclease Speptide. Proc. natn. Acad. Sci., U.S.A. 58, 420–7.CrossRefGoogle ScholarPubMed
Gibson, K. D. & Scheraga, H. A. (1970). Minimization of polypeptide energy. IX. A procedure for seeking the global minimum of functions with many minima. Computers and Biomedical Research 3, 375–84.CrossRefGoogle Scholar
Glickson, J. D., Gordon, S. L., Pitner, T. P., Agresti, D. G. & Walter, R. (1976). Intramolecular 1H nuclear Overhauser effect study of the solution conformation of valinomycin in dimethyl sulfoxide. Biochemistry, N.Y. 15, 5721–9.CrossRefGoogle ScholarPubMed
, N. (1975). Theory of reversible denaturation of globular proteins. Int. J. Peptide Protein Res. 7, 313–23.CrossRefGoogle ScholarPubMed
, N. (1976). Statistical mechanics of protein folding, unfolding, and fluctuation. Adv. Biophys. 9, 65113.Google Scholar
, N. & Scheraga, H. A. (1969). Analysis of the contribution of internal vibrations to the statistical weights of equilibrium conformations of macromolecules. J. chem. Phys. 51, 4751–67.CrossRefGoogle Scholar
, N. & Scheraga, H. A. (1973). Ring closure in chain molecules with Cn, I or S2n symmetry. Macromolecules 6, 273–81.CrossRefGoogle Scholar
, N. & Scheraga, H. A. (1976). On the use of classical statistical mechanics in the treatment of polymer chain conformation. Macromolecules 9, 535–42.CrossRefGoogle Scholar
, M., , N. & Scheraga, H. A. (1970). Molecular theory of the helix-coil transition in polyamino acids. II. Numerical evaluation of s and o for polyglycine and poly-L-alanine in the absence (for s and б) and presence (for б) of solvent. J. chem. Phys. 52, 2060–79.CrossRefGoogle Scholar
, N., Lewis, P. N., , M. & Scheraga, H. A. (1971). A model for the helix-coil transition in specific-sequence copolymers of amino acids. Macromolecules 4, 692709.CrossRefGoogle Scholar
, N., , M. & Scheraga, H. A. (1974). New method for calculating the conformational entropy of a regular helix. Macromolecules 7, 137–9.CrossRefGoogle ScholarPubMed
Goldberg, M. E. (1969). Tertiary structure of Escherichia coli β-D-galactosidase. J. molec. Biol. 46, 441–46.CrossRefGoogle ScholarPubMed
Goldberger, R. F., Epstein, C. J. & Anfinsen, C. B. (1963). Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J. biol. Chem. 238, 628–35.CrossRefGoogle ScholarPubMed
Hagler, A. T. & Lifson, S. (1977). In The Proteins, 3rd edn., vol. III (ed. Neurath, H. and Hill, R. L.). New York: Academic Press (in the Press).Google Scholar
Hagler, A. T., Leiserowitz, L. & Tuval, M. (1976). Experimental and theoretical studies of the barrier to rotation about the N—Cα and Cα—C′ bonds (φ and ψ) in amides and peptides. J. Am. chem. Soc. 98, 4600–12.CrossRefGoogle ScholarPubMed
Hagler, A. T., Scheraga, H. A. & Némethy, G. (1973). Current status of the water-structure problem; application to proteins. Ann. N.Y. Acad. Sci. 204, 5178.CrossRefGoogle ScholarPubMed
Hantgan, R. R., Hammes, G. G. & Scheraga, H. A. 1974. Pathways of folding of reduced bovine pancreactic ribonuclease. Biochemistry, N. Y. 13, 3421–31.CrossRefGoogle Scholar
Hartley, B. S. (1970). Homologies in serine proteases. Phil. Trans. R. Soc., Ser. B 257, 7787.Google Scholar
Hendrickson, W. A. & Love, W. E. (1971). Structure of lamprey haemoglobin. Nature (New Biol.) 232, 197203.CrossRefGoogle ScholarPubMed
Hendrickson, W. A., Love, W. E. & Karle, J. (1973). Crystal structure analysis of sea lamprey hemoglobin at 2 Å resolution. J. molec. Biol. 74, 331–61.CrossRefGoogle Scholar
Hetzel, R., Wüthrich, K., Deisenhofer, J. & Huber, R. (1976). Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). II. Semi-empirical energy calculations. Biophys. Struct. & Mech. 2, 159–80.CrossRefGoogle ScholarPubMed
Hill, D. J. T., Cardinaux, F. & Scheraga, H. A. (1977). Helix-coil stability constants for the naturally occurring amino acids in water. XIV. Methionine parameters from random poly(hydroxypropylglutamine-co-Lmethionine). Biopolymers(in the Press).Google Scholar
Högberg-Raibaud, A. & Goldberg, M. E. (1977). Preparation and characterization of a modified form of β2 subunit of E. coli tryptophan synthetase suitable for investigating protein folding. Proc. natn. Acad. Sci., U.S.A. 74, 442–6.CrossRefGoogle ScholarPubMed
Hochman, J., Gavish, M., Inbar, D. & Givol, D. (1976). Folding and interaction of subunits at the antibody combining site. Biochemistry, N.Y. 15, 2706–10.CrossRefGoogle ScholarPubMed
Honig, B., Ray, A. & Levinthal, C. (1976). Conformational flexibility and protein folding: rigid structural fragments connected by flexible joints in subtilisin BPN. Proc. natn. Acad. Sci., U.S.A. 73, 1974–8.CrossRefGoogle ScholarPubMed
Hopfinger, A. J. (1971). Polymer-solvent interactions for homopolypeptides in aqueous solution. Macromolecules 4, 731–7.CrossRefGoogle Scholar
Howard, J. C., Ali, A., Scheraga, H. A. & Momany, F. A. (1975). Investigation of the conformations of four tetrapeptides by nuclear magnetic resonance and circular dichroism spectroscopy and conformational energy calculations. Macromolecules 8, 607–22.CrossRefGoogle ScholarPubMed
Huber, R., Kukla, D., Rühlmann, A. & Steigemann, W. (1970). Atomic structure of the basic trypsin inhibitor of bovine organs. Kallikrein inactivator. In Proceedings of the International Research Conference on Proteinase Inhibitors, Ist (ed. Fritz, H. and Tschesche, H.), pp. 5665. Berlin: Walter de Gruyter.Google Scholar
Huber, R., Kukla, D., Rühlmann, A. & Steigemann, W. (1971). Pancreatic trypsin inhibitor (Kunitz). Part I: Structure and function. Part II: Complexes with proteinases. Cold Spring Harb. Symp. quant. Biol. 36, 141–50.CrossRefGoogle Scholar
Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A. & Morris, H. R. (1975). Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, Lond. 258, 577–9.CrossRefGoogle ScholarPubMed
Hurrell, J. G. R., Smith, J. A. & Leach, S. J. (1977). Immunological measurements of conformational motility in regions of the myoglobin molecule. Biochemistry, N.Y. 16, 175–85.CrossRefGoogle ScholarPubMed
Hurwitz, F. I. & Hopfinger, A. J. (1976). Conformational analysis of a chain reversal in α-chymotrypsin. Int. J. Peptide Protein Res. 8, 543–50.CrossRefGoogle ScholarPubMed
Ikegami, A. (1977). Structural changes and fluctuations of proteins. I. A statistical-thermodynamic model. Biophys. Chem. 6, 117–30.CrossRefGoogle Scholar
Isogai, Y., Némethy, G. & Scheraga, H. A. (1977). Enkephalin: conformational analysis by means of empirical energy calculations. Proc. natn. Acad. Sci., U.S.A. 74, 414–8.CrossRefGoogle ScholarPubMed
IUPAC-IUB Commission on Biochemical Nomenclature (1970). Abbreviations and symbols for the description of the conformation of polypeptide chains. J. molec. Biol. 52, 117.Google Scholar
Jacoby, S. L. S., Kowalik, J. S. & Pizzo, J. T. (1972). Iterative Methods for Nonlinear Optimization Problems. Englewood Cliffs: Prentice-Hall.Google Scholar
Janin, J. (1976). Surface area of globular proteins. J. molec. Biol. 105, 1314.CrossRefGoogle ScholarPubMed
Janin, J. & Chothia, C. (1976). Stability and specificity of protein-protein interactions: the case of the trypsin-trypsin inhibitor complexes. J. molec. Biol. 100, 197211.CrossRefGoogle ScholarPubMed
Jones, C. R., Gibbons, W. A. & Garsky, V. (1976). Proton magnetic resonance studies of conformation and flexibility of enkephalin peptides. Nature, Lond. 262, 779–82.CrossRefGoogle ScholarPubMed
Kanehisa, M. I. & Ikegami, A. (1977). Structural changes and fluctuations of proteins. II. Analysis of the denaturation of globular proteins. Biophys. Chem. 6, 131–49.CrossRefGoogle ScholarPubMed
Kang, S. & Walter, R. (1976). Theoretical studies on pro-leu-gly-NH2 conformation. Proc. natn. Acad. Sci., U.S.A. 73, 1203–6.CrossRefGoogle ScholarPubMed
Karplus, M. & Weaver, D. L. (1976). Protein-folding dynamics. Nature, Lond. 260, 404–6.CrossRefGoogle ScholarPubMed
Katz, J. L. & Post, B. (1960). The crystal structure and polymorphism of N-methyl acetamide. Acta crystallogr. 13, 624–8.CrossRefGoogle Scholar
Katz, L. & Levinthal, C. (1972). Interactive computer graphics and representation of complex biological structures. A. Rev. Biopizys. Bioeng. 1, 465504.Google ScholarPubMed
Kauzmann, W., Moore, K. & Schultz, D. (1974). Protein densities from X-ray crystallographic coordinates. Nature, Lond. 248, 447–9.CrossRefGoogle ScholarPubMed
Khaled, M. A. & Urry, D. W. (1976). Nuclear Overhauser enhancement demonstration of the type II β-turn in repeat peptides of tropoelastin. Biochem. biophys. Res. Commun. 70, 485–91.CrossRefGoogle ScholarPubMed
Kitano, M., Fukuyama, T. & Kuchitsu, K. (1973). Molecular structure of N-methylacetamide as studied by gas electron diffraction. Bull. chem. Soc. Japan 46, 384–7.CrossRefGoogle Scholar
Klapper, M. H. (1973). Apolar bond: a reevaluation. Frog. Bioorg. Chem. 2, 55132.Google Scholar
Klotz, I. M. (1970). Comparison of molecular structures of proteins: helix content; distribution of apolar residues. Archs Biochem. Biophys. 138, 704–6.CrossRefGoogle ScholarPubMed
Knof, S., Strassmair, H., Engel, J., Rothe, M. & Steffen, K. D. (1972). Binding of benzyl alcohol to the peptide CO group of cyclotri-L-prolyl studied by infrared spectroscopy. Biopolymers 11, 731–3.Google Scholar
Kopple, K. D., Go, A. & Pilipauskas, D. R. (1975). Studies of peptide conformation. Evidence for β structures in solutions of linear tetrapeptides containing proline. J. Am. chem. Soc. 97, 6830–8.CrossRefGoogle ScholarPubMed
Kotelchuck, D. & Scheraga, H. A. (1968). The influence of short-range interactions on protein conformation. I. Side chain–backbone interactions within a single peptide unit. Proc. natn. Acad. Sci. U.S.A., 61, 1163–70.CrossRefGoogle ScholarPubMed
Kotelchuck, D. & Scheraga, H. A. (1969). The influence of short-range interactions on protein conformation. II. A model for predicting the α-he1ical regions of proteins. Proc. natn. Acad. Sci, U.S.A. 62, 1421.CrossRefGoogle Scholar
Kuntz, I. D. (1972 a). Protein folding. J. Amer. chem. Soc. 94, 4009–12.CrossRefGoogle ScholarPubMed
Kuntz, I. D. (1972 b). Tertiary structure in carboxypeptidase. J. Amer. chem. Soc. 94, 8568–72.CrossRefGoogle ScholarPubMed
Kuntz, I. D. (1975). An approach to the tetriary structure of globular proteins. J. Amer. chem. Soc. 97, 4362–6.CrossRefGoogle Scholar
Kuntz, I. D. Jr, & Kauzmann, W. (1974). Hydration of proteins and poiypeptides. Adv. Protein Chem. 28, 239345.CrossRefGoogle Scholar
Kuntz, I. D., Crippen, G. M., Kollman, P. A. & Kimelman, D. (1976). Calculation of protein tertiary structure. J. molec. Biol. 106, 983–94.CrossRefGoogle ScholarPubMed
Lacroute, F. & Stent, G. S. (1968). Peptide chain growth of β-galactosidase in Escherichia coli. J. molec. Biol. 35, 165–73.CrossRefGoogle Scholar
Leach, S. J., Némethy, G. & Scheraga, H. A. (1977). Use of proton nuclear Overhauser effects for the determination of the conformations of amino acid residues in oligopeptides. Biochem. biophys. Res. Commun. 75, 207–15.CrossRefGoogle ScholarPubMed
Lee, B. & Richards, F. M. (1971). The interpretation of protein structures: estimation of static accessibility. J. molec. Biol. 55, 379400.CrossRefGoogle ScholarPubMed
Lenstra, J. A. (1977). Evaluation of secondary structure predictions in proteins. Biochim. biophys. Acta 491, 333–8.CrossRefGoogle ScholarPubMed
Lenstra, J. A., Hofsteenge, J. & Beintema, J. J. (1977). Invariant features of the structure of pancreatic ribonuclease. A test of different predictive models. J. molec. Biol. 109, 185–93.CrossRefGoogle ScholarPubMed
Levinthal, C. (1968). Are there pathways for protein folding? J. Chim. phys. 65, 44–5.CrossRefGoogle Scholar
Levitt, M. (1976). A simplified representation of protein conformations for rapid simulation of protein folding. J. molec. Biol. 104, 59107.CrossRefGoogle ScholarPubMed
Levitt, M. & Chothia, C. (1976). Structural patterns in globular proteins. Nature, Lond. 261, 552–8.CrossRefGoogle ScholarPubMed
Levitt, M. & Lifson, S. (1969). Refinement of protein conformations using a macromolecular energy minimization procedure. J. molec. Biol. 46, 269–79.CrossRefGoogle ScholarPubMed
Levitt, M. & Warshel, A. (1975 a). Computer simulation of protein folding. Nature, Lond. 253, 694–8.CrossRefGoogle ScholarPubMed
Levitt, M. & Warshel, A. (1975 b). (Reply to Robson's criticism.) Nature, Lond. 254, 388.CrossRefGoogle Scholar
Lewis, P. N. & Scheraga, H. A. (1971 a). Predictions of structural homologies in cytochrome c proteins. Archs Biochem. Biophys. 144, 576–83.CrossRefGoogle ScholarPubMed
Lewis, P. N. & Sheraga, H. A. (1971 b). Prediction of structural homology between bovine α-lactalbumin and hen egg white lysozyme. Archs Biochem. Biophys. 144, 584–8.CrossRefGoogle ScholarPubMed
Lewis, P. N., , N., , M., Kotelchuck, D. & Scheraga, H. A. (1970). Helix probability profiles of denatured proteins and their correlation with native structures. Proc. natn. Acad. Sci., U.S.A. 65, 810–15.CrossRefGoogle ScholarPubMed
Lewis, P. N., Momany, F. A. & Scheraga, H. A. (1971). Folding of polypeptide chains in proteins: a proposed mechanism for folding. Proc. natn. Acad. Sci., U.S.A. 68, 2293–7.CrossRefGoogle ScholarPubMed
Lewis, P. N., Momany, F. A. & Scheraga, H. A. (1973 a). Chain reversals in proteins. Biochim. biophys. Acta 303, 211–29.CrossRefGoogle ScholarPubMed
Lewis, P. N., Momany, F. A. & Scheraga, H. A. (1973 b). Energy parameters in polypeptides. VI. Conformational energy analysis of the N-acetyl N'-methyl amides of the twenty naturally occurring amino acids. Israel Jnl Chem. 11, 121–52.CrossRefGoogle Scholar
Lifson, S. & Roig, A. (1961). On the theory of helix-coil transition in polypeptides. J. chem. Phys. 34, 1963–74.CrossRefGoogle Scholar
Liljas, A. & Rossmann, M. G. (1974). X-ray studies of protein interactions. A. Rev. Biochem. 43, 475507.CrossRefGoogle Scholar
Lim, V. I. (1974 a). Structural principles of the globular organization of protein chains. A stereochemical theory of globular protein secondary structure. J. molec. Biol. 88, 857–72.CrossRefGoogle ScholarPubMed
Lim, V. I. (1974 b). Algorithms for prediction of α-helical and β-structural regions in globular proteins. J. molec. Biol. 88, 873–94.CrossRefGoogle ScholarPubMed
Lim, V. I. (1974 c). Stereochemical theory of the secondary structure of globular proteins. I. General propositions. Biofizika 19, 366–78.Google ScholarPubMed
Lim, V. I. (1975). Structural transformations of the protein chain during the native globule formation. Hypothesis of “excess” helices. Dokl. Akad. Nauk SSSR 222, 1467–9.Google Scholar
Lim, V. I. & Efimov, A. V. (1976). The folding of protein chains. Prediction of tobacco mosaic virus protein tertiary structure. FEBS Lett. 69, 41–4.CrossRefGoogle ScholarPubMed
Liquori, A. M. (1969). Stereochemical code of amino acid residues in polypeptides and proteins. Symmetry Funct. Biol. Syst. Macromol. Level, Proc. IIth Nobel Symp., 1968, pp. 101121.Google Scholar
Markley, J. L. (1975 a). Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. I. Reinvestigation of the histidine peak assignments. Biochemistry, N.Y. 14, 3546–54.CrossRefGoogle ScholarPubMed
Markley, J. L. (1975 b). Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. II. pH and inhibitorinduced conformational transitions affecting histidine-48 and one tyrosine residue of ribonuclease. Biochemistry, N.Y. 14, 3554–61.CrossRefGoogle ScholarPubMed
Markley, J. L. & Finkenstadt, W. R. (1975). Correlation proton magnetic resonance studies at 250 MHz of bovine pancreatic ribonuclease. III. Mutual electrostatic interaction between histidine residues 12 and 119. Biochemistry, N.Y. 14, 3562–6.CrossRefGoogle ScholarPubMed
Matheson, R. R. Jr, Dugas, H. & Scheraga, H. A. (1977 a). Electron paramagnetic resonance spectroscopy as a monitor of the pathway of the thermal unfolding of ribonuclease A. Biochem. biophys. Res. Commun. 74, 869–76.CrossRefGoogle ScholarPubMed
Matheson, R. R. Jr, Van, Wart H. E., Burgess, A. W., Weinstein, L. I. & Scheraga, H. A. (1977 b). Study of protein topography with flash-photolytically generated nonspecific surface-labeling reagents. Biochemistry, N.Y. 16, 396403.CrossRefGoogle ScholarPubMed
Mathews, F. S., Levine, M. & Argos, P. (1972). Three-dimensional Fourier synthesis of calf liver cytochrome b5 at 2·8 Å resolution. J. molec. Biol. 64, 449–64.CrossRefGoogle ScholarPubMed
Matthews, B. W. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. biophys. Acta 405, 442–51.CrossRefGoogle ScholarPubMed
Matthews, B. W. (1976). X-ray crystallographic studies of proteins. Ann. Rev. phys. Chem. 27, 493523.CrossRefGoogle Scholar
Matthews, B. W. (1977). X-ray structure of proteins. In The Proteins, 3rd edn, vol. II (ed. Neurath, H. and Hill, R. L.). New York: Academic Press (in the Press).Google Scholar
Matthews, B. W., Weaver, L. H. & Kester, W. R. (1974.). The conformation of thermolysin. J. biol. Chem. 249, 8030–44.CrossRefGoogle ScholarPubMed
Maxfield, F. R. & Scheraga, H. A. (1975). The effect of neighboring charges on the helix forming ability of charged amino acids in proteins. Macromolecules 8, 491–3.CrossRefGoogle ScholarPubMed
Maxfield, F. R. & Scheraga, H. A. (1976). Status of empirical methods for the prediction of protein backbone topography. Biochemistry, N.Y. 15, 5138–53.CrossRefGoogle ScholarPubMed
Maxfield, F. R., Alter, J. E., Taylor, G. T. & Scheraga, H. A. (1975). Helix-coil stability constants for the naturally occurring amino acids in water. IX. Glutamic acid parameters from random-poly(hydroxybutylglutamine-co-L-glutamic acid). Macromolecules 8, 479–91.CrossRefGoogle ScholarPubMed
McCammon, J. A., Gelin, B. R., Karplus, M. & Wolynes, P. G. (1976). The hinge-bending mode in lysozyme. Nature, Lond. 262, 325–6.CrossRefGoogle ScholarPubMed
Melnikov, P. N., Akhmedov, N A., Lipkind, G. M. & Popov, E. M. (1976). An approach to calculations of the stable conformations of oligopeptides. III. Oligopeptides with interchanging Pro and Phe residues. Bioorg. Khim. 2, 2842.Google Scholar
Miller, M. H. & Scheraga, H. A. (1976). Calculation of the structures of collagen models. Role of interchain interactions in determining the triple helical coiled-coil conformation I. Poly(glycyl-prolyl-prolyl). J. Polym. Sci. (Polymer Symposia) 54, 171200.Google Scholar
Moews, P. C. & Kretsjnger, R. H. (1975). Refinement of the structure of carp muscle calcium-binding paravalbumin by model building and difference Fourier analysis. J. molec. Biol. 91, 201–28.CrossRefGoogle Scholar
Momany, F. A. (1976 a). Conformational energy analysis of the molecule, leuteinizing hormone-releasing hormone. I. Native decapeptide. J. Amer. chem. Soc. 98, 2990–6.CrossRefGoogle Scholar
Momany, F. A. (1976 b). Conformational energy analysis of the molecule, luteinizing hormone-releasing hormone. 2. Tetrapeptide and decapeptide analogues. J. Amer. chem. Soc. 98, 29963000.CrossRefGoogle ScholarPubMed
Momany, F. A. (1977). Conformational analysis of methionine-enkephalin and some analogs. Biochem. biophys. Res. Commun. 75, 1098–103.CrossRefGoogle ScholarPubMed
Momany, F. A., McGuire, R. F., Yan, J. F. & Scheraga, H. A. (1971). Energy parameters in polypeptides. IV. Semi-empirical molecular orbital calculations of conformational dependence of energy and partial charge in di- and tripeptides. J. Phys. Chem. 75, 2286–97.Google Scholar
Momany, F. A., Carruthers, L. M., McGuire, R. F. & Scheraga, H. A. (1974 a). Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides. J. Phys. Chem. 78, 15951620.CrossRefGoogle Scholar
Momany, F. A., Carruthers, L. M. & Scheraga, H. A. (1974 b). Intermolecular potentials from crystal data. IV. Application of empirical potentials to the packing configurations and lattice energies in crystals of amino acids. J. Phys. Chem. 78, 1621–30.CrossRefGoogle Scholar
Momany, F. A., McGuire, R. F., Burgess, A. W. & Scheraga, H. A. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem. 79, 2361–81.CrossRefGoogle Scholar
Montagut, M., Lemanceau, B. & Bellocq, A. M. (1974). Conformational analysis of thyrotropin releasing factor by proton magnetic resonance spectroscopy. Biopolymers 13, 2615–29.CrossRefGoogle ScholarPubMed
Nagano, K. (1973). Logical analysis of the mechanism of protein folding. I. Predictions of helices, loops and β-structures from primary structure. J. molec. Biol. 75, 401–20.CrossRefGoogle ScholarPubMed
Nagano, K. (1977 a). Logical analysis of the mechanism of protein folding. IV. Super-secondary structures. J. molec. Blot. 109, 235–50.CrossRefGoogle ScholarPubMed
Nagano, K. (1977 b). Triplet information in helix prediction applied to the analysis of super-secondary structures. J. molec. Blol. 109, 251–74.CrossRefGoogle Scholar
Némethy, G. (1974). Conformational energy calculations and the folding of proteins. PAABS Revista 3, 51–6.Google Scholar
Némethy, G. & Scheraga, H. A. (1977). Intermolecular potentials from crystal data. V. Determination of empirical potentials for O—H…O hydrogen bonds from packing configurations and lattice energies of polyhydric alcohols. J. Phys. Chem. 81, 928–31.CrossRefGoogle Scholar
Nishikawa, K. & Ooi, T. (1972). Tertiary structure of proteins. II. Freedom of dihedral angles and energy calculation. J. physical. Soc. Japan 32, 1338–47.CrossRefGoogle Scholar
Nishikawa, K. & Ooi, T. (1974). Comparison of homologous tertiary structures of proteins. J. theor. Biol. 43, 351–74.CrossRefGoogle ScholarPubMed
Nishikawa, K. & Scheraga, H. A. (1976). Geometrical criteria for formation of coiled-coil structures of polypeptide chains. Macromolecules 9, 395407.CrossRefGoogle ScholarPubMed
Nishikawa, K., Momany, F. A. & Scheraga, H. A. (1974). Low energy structures of two dipeptides and their relationship to bend conformations. Macromolecules 7, 797806.CrossRefGoogle ScholarPubMed
Nishikawa, K., Ooi, T., Isogai, Y. & Saitô, N. (1972). Tertiary structure of proteins. I. Representation and computation of the conformations. J. physical. Soc. Japan 32, 1331–7.CrossRefGoogle Scholar
Nockolds, C. E., Kretsinger, R. H., Coffee, C. J. & Bradshaw, R. A. (1972). Structure of a calcium-binding carp myogen. Proc. natn. Acad. Sci., U.S.A., 69 581–4.CrossRefGoogle ScholarPubMed
Nozaki, Y. & Tanford, C. (1971). The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J. biol. Chem. 246, 2211–17.CrossRefGoogle ScholarPubMed
Ohlsson, I., Nordström, B. & Brändén, C.-I. (1976). Structural and functional similarities within the coenzyme binding domains of dehydrogenases. J. molec. Biol. 89, 339–54.CrossRefGoogle Scholar
Okuyama, K., Tanaka, N., Ashida, T. & Kakudo, M. (1976). Structure analysis of a collagen model polypeptide, (Pro-Pro-Gly)10. Bull. chem. Soc. Japan 49, 1805–10.CrossRefGoogle Scholar
Ovchinnikov, Y. A., Ivanov, V. T., Bystrov, V. F., Miroshnikov, A. I., Shepel, E. N., Abdullaev, N. D, Efremov, E. S. & Senyavina, L. B. (1970). The conformation of gramicidin Sand its N, N′-diacetyl derivative in solutions. Biophys. Res. Commun. 39, 217–25.CrossRefGoogle Scholar
Padlan, E. A. (1977). Structural basis for the specificity of antibody-antigen reactions and structural mechanisms for the diversification of antigenbinding specificities. Q. Rev. Biophys. 10, 3565.CrossRefGoogle ScholarPubMed
Phillips, D. C. (1967). The hen egg-white lysozyme molecule. Proc. natn. Acad. Sci., U.S.A. 57, 484–95.CrossRefGoogle Scholar
Phillips, D. C. (1970). The development of crystallographic enzymology. In British Biochemistry, Past and Present (ed. Goodwin, T. W.). Biochem. Soc. Symp. No. 30, pp. 1128. London: Academic Press.Google Scholar
Pincus, M. R. & Scheraga, H. A. (1977). An approximate treatment of long- range interactions in proteins. J. Phys. Chern. (in the Press).CrossRefGoogle Scholar
Pincus, M. R., Zimmerman, S. S. & Scheraga, H. A. (1976). Prediction of the three-dimensional structures of enzyme-substrate and enzyme-inhibitor complexes of lysozyme. Proc. natn. Acad. Sci., U.S.A. 73, 4261–5.CrossRefGoogle ScholarPubMed
Pincus, M. R., Zimmerman, S. S. & Scheraga, H. A. (1977). Structures of enzyme-substrate complexes of lysozyme. Proc. natn. Acad. Sci., U.S.A. 74 (in the Press).CrossRefGoogle ScholarPubMed
Podo, F., Némethy, G., Indovina, P. L., Radics, L. & Viti, V. (1974). Conformational studies of ethylene glycol and its two methyl ether derivatives. I. Theoretical analysis of intramolecular interactions. Molec. Phys. 27, 521–39.CrossRefGoogle Scholar
Poljak, R. J., Amzel, L. M., Avey, H. P., Chen, B. L., Phizackerley, R. P. & Saul, F. (1973). Three-dimensional structure of the Fab′ fragment of a human immunoglobulin at 2·8 Å resolution. Proc. natn. Acad. Sci., U.S.A. 70, 3305–10.CrossRefGoogle ScholarPubMed
Ponnuswamy, P. K., Warme, P. K. & Scheraga, H. A. (1973). Role of medium-range interactions in proteins. Proc. natn. Acad. Sci., U.S.A. 70, 830–3.CrossRefGoogle ScholarPubMed
Ptitsyn, O. B., Lim, V. I. & Finkelstein, A. V. (1972). Secondary structure of globular proteins and the principle of concordance of local and long-range interactions. Fed. Eur. Biochem. Soc. Meet. [Proc.] 25, 421–9.Google Scholar
Ptitsyn, O. B. & Rashin, A. A. (1975). A model of myoglobin self-organization. Biophys. Chem. 3, 120.CrossRefGoogle Scholar
Pullman, B. & Pullman, A. (1974). Molecular orbital calculations on the conformation of amino acid residues of proteins. Adv. Protein Chem. 28, 347526.CrossRefGoogle ScholarPubMed
Quiocho, F. A. & Lipscomb, W. N. (1971). Carboxypeptidase A: A protein and an enzyme. Adv. Protein Chem. 25, 178.CrossRefGoogle ScholarPubMed
Rackovsky, S. R. & Scheraga, H. A. (1977). Influence of ordered backbone structure on protein folding; a study of some simple models. Macromolecules (submitted).Google Scholar
Ralston, E., De, Coen J. L. & Walter, R. (1974). Tertiary structure of H-Pro-Leu-Gly-NH2, the factor that inhibits release of melanocyte stimulating hormone, derived by conformational energy calculations. Proc. natn. Acad. Sci., U.S.A. 71, 1142–4.CrossRefGoogle ScholarPubMed
Ramachandran, G. N. (1969). Stereochemistry of biopolymer conformation. Symmetry Funct. Biol. Syst. Macromol. Level, Proc. 11th Nobel Symp. 1968, pp. 79100.Google Scholar
Ramachandran, G. N. (1974). Aspects of peptide conformation. In Peptides, Polypeptides and Proteins (ed. Blout, E. R., Bovey, F. A., Goodman, M. and Lotan, N.), pp. 1434. New York: Wiley.Google Scholar
Ramachandran, G. N. & Mitra, A. K. (1976). An explanation for the rare occurrence of cis peptide units in proteins and polypeptides. J. molec. Biol. 107, 8592.CrossRefGoogle ScholarPubMed
Ramachandran, G. N. & Sasiserharan, V. (1968). Conformation of polypeptides and proteins. Adv. Protein Chem. 23, 283437.CrossRefGoogle ScholarPubMed
Rao, S. T. & Rossmann, M. G. (1973). Comparison of super-secondary structures in proteins. J. molec. Biol. 76, 241–56.CrossRefGoogle ScholarPubMed
Reed, L. L. & Johnson, P. L. (1973). Solid state conformation of the C- terminal tripeptide of oxytocin, L-Pro-L-Leu-Gly-NH2.0·5 H2O. J. Am. them. Soc. 95, 7523–4.CrossRefGoogle Scholar
Richards, F. M. (1974). The interpretation of protein structures: total volume, group volume distributions and packing density. J. molec. Biol. 82, 114.CrossRefGoogle ScholarPubMed
Richards, F. M. (1977). Areas, volumes, packing, and protein structure. A. Rev. Biophys. Bioeng. 6, 151–76.CrossRefGoogle ScholarPubMed
Richardson, J. S. (1976). Handedness of crossover connections in ft sheets. Proc. natn. Acad. Sci., U.S.A. 73, 2619–23.CrossRefGoogle Scholar
Richardson, J. S. (1977). β sheet topology and the relatedness of proteins. Nature, Land. (in the Press).CrossRefGoogle Scholar
Richardson, J. S., Richardson, D. C., Thomas, K. A., Silverton, E. W. & Davies, D. R. (1976). Similarity of three-dimensional structure between the immunoglobulin domain and the copper, zinc superoxide dismutase subunit. J. molec. Biol. 102, 221–35.CrossRefGoogle ScholarPubMed
Robson, B. (1974). Analysis of the code relating sequence to conformation in globular proteins. Theory and application of expected information. Biochem. J. 141, 853–67.CrossRefGoogle ScholarPubMed
Robson, B. (1975). Folding proteins along the dotted lines. Nature, Lond. 254, 386–8.CrossRefGoogle Scholar
Robson, B. & Pain, R. H. (1971). Analysis of the code relating sequence to conformation in proteins. Possible implications for the mechanism of formation of helical regions. J. molec. Biol. 58, 237–59.CrossRefGoogle ScholarPubMed
Robson, B. & Pain, R. H. (1974 a). Analysis of the code relating sequence to conformation in globular proteins. Development of a stereochemical alphabet on the basis of intra-residue information. Biochem. J. 141, 869–82.CrossRefGoogle ScholarPubMed
Robson, B. & Pain, R. H. (1974 b). Analysis of the code relating sequence to conformation in globular proteins. An informational analysis of the role of the residue in determining the conformation of its neighbours in the primary sequence. Biochem. J. 141, 883–97.CrossRefGoogle ScholarPubMed
Robson, B. & Pain, R. H. (1974 c). Analysis of the code relating sequence to conformation in globular proteins. The distribution of residue pairs in turns and kinks in the backbone chain. Biochein. J. 141, 899904.CrossRefGoogle ScholarPubMed
Robson, B. & Suzuki, E. (1976). Conformational properties of amino acid residues in globular proteins. J. molec. Biol. 107, 327–56.CrossRefGoogle ScholarPubMed
Rose, G. D., Winters, R. H. & Wetlaufer, D. B. (1976). A testable model for protein folding. FEBS Lett. 63, 1016.Google ScholarPubMed
Rossmann, M. G. & Argos, P. (1975). A comparison of the heme binding pocket in globins and cytochrome b5. J. biol. Chem. 250, 7525–32.CrossRefGoogle ScholarPubMed
Rossmann, M. G. & Argos, P. (1976). Exploring structural homology of proteins. J. molec. Biol. 105, 7595.CrossRefGoogle ScholarPubMed
Rossmann, M. G. & Argos, P. (1977). The taxonomy of protein structure. J. molec. Biol. 109, 99129.CrossRefGoogle ScholarPubMed
Rossmann, M. G. & Liljas, A. (1974). Recognition of structural domains in globular proteins. J. molec. Biol. 85, 177–81.CrossRefGoogle Scholar
Rossman, M. G., Moras, D. & Olsen, K. W. (1974). Chemical and biological evolution of a nucleotide-binding protein. Nature, Lond. 250, 194–9.CrossRefGoogle Scholar
Sachs, D. H., Schechter, A. N., Eastlake, A. & Anfinsen, C. B. (1972 a). An immunologic approach to the conformational equilibria of polypeptides. Proc. natn. Acad. Sci., U.S.A. 69, 3790–4.CrossRefGoogle Scholar
Sachs, D. H., Schechter, A. N., Eastlake, A. & Anfinsen, C. B. (1972 b). Antibodies to a distinct antigenic determinant of staphylococcal nuclease. J. Immun. 109, 1300–10.CrossRefGoogle ScholarPubMed
Sachs, D. H., Schechter, A. N., Eastlake, A. & Anfinsen, C. B. (1972 c). Inactivation of staphylococcal nuclease by the binding of antibodies to a distinct antigenic determinant. Biochemistry, N. Y. 11, 4268–73.CrossRefGoogle ScholarPubMed
Sachs, D. H., Schechter, A. N., Eastlake, A. & Anfinsen, C. B. (1974). Immunological distinction between the possible origins of enzymatic activity in a polypeptide fragment of staphylococcal nuclease. Nature, Lond. 251, 242–4.CrossRefGoogle Scholar
Scheraga, H. A. (1968). Calculations of conformations of polypeptides. Adv. phys. org. Chem. 6, 103–84.Google Scholar
Scheraga, H. A. (1969). Calculation of conformations of polypeptides from amino acid sequence. Symmetry Funct. Biol. Syst. Macromol. Level, Proc. 11th Nobel Symp., 1968, pp. 4378.Google Scholar
Scheraga, H. A. (1971). Theoretical and experimental studies of conformations of polypeptides. Chem. Rev. 71, 195217.CrossRefGoogle ScholarPubMed
Scheraga, H. A. (1973 a). Interactions in polypeptides and proteins. Jerusalem Symp. Quantum Chem. Biochem. 5, 5168.Google Scholar
Scheraga, H. A. (1973 b). On the domination of short-range interactions in polypeptides and proteins. Pure and Applied Chem. 36, 18.CrossRefGoogle Scholar
Scheraga, H. A. (1974 a). Prediction of protein conformation. In Current Topics in Biochemistry, 1973 (ed. Anfinsen, C. B. and Schechter, A. N.), pp. 142. New York: Academic Press.Google Scholar
Scheraga, H. A. (1974 b). Interatomic energies, and protein folding. In Peptides, Polypeptides and Proteins (ed. Blout, E. R., Bovey, F. A., Goodman, M. and Lotan, N.), pp. 4970. New York: John Wiley and Sons.Google Scholar
Scheraga, H. A. (1977). Intermolecular potential for water and the hydration of proteins. Ann. N.Y. Acad. Sci. (in the Press).CrossRefGoogle Scholar
Schiffer, M., Girling, R. L., Ely, K. R. & Edmundson, A. B. (1973). Structure of a λ-type Bence–Jones protein at3·5 Å resolution. Biochemistry, N.Y. 12, 4620–31.CrossRefGoogle ScholarPubMed
Schindler, M., Assaf, Y., Sharon, N. & Chipman, D. M. (1977). Mechanism of lysozyme catalysis: role of ground-state strain in subsite D in hen egg-white and human lysozymes. Biochemistry, N. Y. 16, 423–31.CrossRefGoogle ScholarPubMed
Schulz, G. E. (1977). Structural rules for globular proteins. Angew. Chern., Internat. Edn., 16, 2332.CrossRefGoogle ScholarPubMed
Schulz, G. E. & Schirmer, R. H. (1974). Topological comparison of adenyl kinase with other proteins. Nature, Lond. 250, 142–4.CrossRefGoogle ScholarPubMed
Schulz, G. E., Barry, C. D., Friedman, J., Chou, P. Y., Fasman, G. D., Finkelstein, A. V., Lim, V. I., Ptitsyn, O. B., Kabat, E. A., Wu, T. T., Levitt, M., Robson, B. & Nagano, K. (1974). Comparison of predicted and experimentally determined secondary structure of adenyl kinase. Nature, Lond. 250, 140–2.CrossRefGoogle ScholarPubMed
Shipman, L. L., Burgess, A. W. & Scheraga, H. A. (1975). A new approach to empirical intermolecular and conformational potential energy functions. I. Description of model and derivation of parameters. Proc. natn. Acad. Sci., U.S.A. 72, 543–7.CrossRefGoogle ScholarPubMed
Shotton, D. M. & Hartley, B. S. (1973). Evidence for the amino acid sequence of porcine pancreatic elastase. Biochem. J. 131, 643–75.CrossRefGoogle ScholarPubMed
Shotton, D. M. & Watson, H. C. (1970 a). Three-dimensional structure of tosyl-elastase. Nature, Lond. 225, 811–16.CrossRefGoogle ScholarPubMed
Shotton, D. M. & Watson, H. C. (1970 b). Three-dimensional structure of crystalline porcine pancreatic elastase. Phil. Trans. R. Soc. Ser. B, 257, 111–18.Google ScholarPubMed
Shrake, A. & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. molec. Biol. 79, 351–71.CrossRefGoogle ScholarPubMed
Simon, I., Némethy, G. & Scfieraga, H. A. (1977). Conformational energy calculations of the effects of sequence variations on the conformation of two tetrapeptides. Macromolecules. (To be submitted.)Google Scholar
Smith, I. C. P. (1968). A study of the conformational properties of bovine pancreatic ribonuclease A by electron paramagnetic resonance. Biochemistry, N. Y. 7, 745–57.CrossRefGoogle ScholarPubMed
Srinivasan, R., Balasubramanian, R. & Rajan, S. S. (1975). Some new methods and general results of analysis of protein crystallographic structural data. J. molec. Biol. 98, 739–47.CrossRefGoogle ScholarPubMed
Staros, J. V. & Richards, F. M. (1974). Photochemical labeling of the surface proteins of human erythrocytes. Biochemistry, N. Y. 13, 2720–6.CrossRefGoogle ScholarPubMed
Steinberg, I. Z., Harrington, W. F., Berger, A., Sela, M. & Katchalski, E. (1960). The configurational changes of poly-L-proline in solution. J. Amer. chem. Soc. 82, 5263–79.CrossRefGoogle Scholar
Stern, A., Gibbons, W. A. & Craig, L. C. (1968). A conformational analysis of gramicidin S-A by nuclear magnetic resonance. Proc. natn. Acad. Sci., U.S.A. 61, 734–41.CrossRefGoogle Scholar
Sternberg, M. J. E. & Thornton, J. M. (1976). On the conformation of proteins: the handedness of the β-strand-α-helix-β-strand unit. J. molec. Biol. 105, 367–82.CrossRefGoogle ScholarPubMed
Sternberg, M. J. E. & Thornton, J. M. (1977 a). On the conformation of proteins: the handedness of the connection between parallel β-strands. J. molec. Biol. 110, 269–83.CrossRefGoogle ScholarPubMed
Sternberg, M. J. E. & Thornton, J. M. (1977 b). On the conformation of proteins: an analysis of β-pleated sheets. J. molec. Biol. 110, 285–96.CrossRefGoogle ScholarPubMed
Stimson, E. R., Zimmerman, S. S. & Scheraga, H. A. (1977). Conformational studies of oligopeptides containing proline and glycine. Macromolecules (in the Press).CrossRefGoogle Scholar
Strassmair, H., Engel, J. & Knof, S. (1971). Binding of alcohols to the peptide CO group of poly-L-proline in the I and II conformation. II. Binding constants from infrared measurements in solution. Biopolymers 10, 1759–76.CrossRefGoogle Scholar
Suezaki, Y. & , N. (1975). Breathing mode of conformational fluctuations in globular proteins. Int. J. Peptide Protein Res. 7, 333–4.CrossRefGoogle ScholarPubMed
Suzuki, E. & Robson, B. (1976). Relationship between helix-coil transition parameters for synthetic polypeptides and helix conformation parameters for globular proteins. A simple model. J. molec. Biol. 107, 357–67.CrossRefGoogle ScholarPubMed
Swenson, M. K., Burgess, A. W. & Scheraga, H. A. (1977). Conformational analysis of polypeptides. Application to homologous proteins. Symposium on ‘Frontiers in Physico-chemical Biology,’ Paris. (in the Press).Google Scholar
Taketomi, H., Ueda, Y. & , N. (1975). Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Peptide Protein Res. 7, 445–59.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1975 a). Theory of the cooperative transition between two ordered conformations of poly(L-proline). I. Phenomenological theory. Macromolecules 8, 494503.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1975 b). Theory of the cooperative transition between two ordered conformations of poly(L-proline). II. Molecular theory in the absence of solvent. Macromolecules 8, 504–16.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1975 c). Theory of the cooperative transition between two ordered conformations of poly(L-proline). III. Molecular theory in the presence of solvent. Macromolecules 8, 516–21.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1975 d). Model of protein folding: inclusion of short-, medium-, and long-range interactions. Proc. natn. Acad. Sci., U.S.A. 72, 3802–6.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1976 a). Statistical mechanical treatment of protein conformation. I. Conformational properties of amino acids in proteins. Macromolecules 9, 142–59.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1976 b). Statistical mechanical treatment of protein conformation. II. A three-state model for specific sequence copolymers of amino acids. Macromolecules 9, 159–67.CrossRefGoogle Scholar
Tanaka, S. & Scheeaga, H. A. (1976 c). Statistical mechanical treatment of protein conformation. III. Prediction of protein conformation based on a three-state model. Macromolecules 9, 168–82.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1976 d). Statistical mechanical treatment of protein conformation 4. A four-state model for specific-sequence copolymers of amino acids. Macromolecules 9, 812–33.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1976 e). Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules 9, 945–50.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1977 a). Statistical mechanical treatment of protein conformation 5. A multi-state model for specific-sequence copolymers of amino acids. Macromolecules 10, 920.CrossRefGoogle Scholar
Tanaka, S. & Scheraga, H. A. (1977 b). Hypothesis about the mechanism of protein folding. Macromolecules 10, 291304.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1977 c). Statistical mechanical treatment of protein conformation. 6. Elimination of empirical rules for prediction by use of a high-order probability. Correlation between the amino acid sequences and conformations for homologous neurotoxin proteins. Macromolecules 10, 305–16.CrossRefGoogle ScholarPubMed
Tanaka, S. & Scheraga, H. A. (1977 d). Model of protein folding: incorporation of a one-dimensional short-range (Ising) model into a three- dimensional model. Proc. natn. Acad. Sci., U.S.A. 74, 1320–3.CrossRefGoogle ScholarPubMed
Teller, D. C. (1976). Accessible area, packing volumes and interaction surfaces of globular proteins. Nature, Lond. 260, 729–31.CrossRefGoogle ScholarPubMed
Ueda, Y. & , N. (1976). Theory of large-amplitude conformational fluctuations in native globular proteins. Int. J. Peptide Protein Res. 8, 551–8.CrossRefGoogle ScholarPubMed
Urry, D. W. & Ohnishi, T. (1974). Recurrence of β turns in repeat peptides of elastin: the hexapeptide ala-pro-gly-val-gly-val sequences and den-vatives. In Peptides, Polypeptides and Proteins (ed. Blout, E. R., Bovey, F. A., Goodman, M. and Lotan, N.), pp. 230–47. New York: Wiley.Google Scholar
Venkatacfialam, C. M. (1968). Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units. Biopolymers 6, 1425–36.CrossRefGoogle Scholar
Walter, R., Bernal, I. & Johnson, L. F. (1972). Has the MSH-releaseinhibiting hormone a preferred conformation? In Chemistry and Biology of Peptides (ed. Meienhofer, J.), pp. 131–5. Ann Arbor, Mich.: Ann Arbor Sci. Pubi.Google Scholar
Warme, P. K. & Scheraga, H. A. (1974). Refinement of the X-ray structure of lysozyme by complete energy minimization. Biochemistry, N.Y. 13, 757–67.CrossRefGoogle ScholarPubMed
Warme, P. K., Momany, F. A., Rumball, S. V., Tuttle, R. W. & Scheraga, H. A. (1974). Computation of structures of homologous proteins. α-Lactalbumin from lysozyme. Biochemistry, N. Y. 13, 768–82.CrossRefGoogle ScholarPubMed
Warshel, A. & Levitt, M. (1976). Folding and stability of helical proteins: carp myogen. J. molec. Biol. 106, 421–37.CrossRefGoogle ScholarPubMed
Watenpaugh, K. D., Sieker, L. C., Herriott, J. R. & Jensen, L. H. (1973). Refinement of the model of a protein: rubredoxin at 1·5 Å resolution. Acta crystallogr. B29, 943–56.CrossRefGoogle Scholar
Watson, H. C. (1969). The stereochemistry of the protein myoglobin. Prog. Stereochem. 4, 299333.Google Scholar
Weber, G. (1975). Energetics of ligand binding to proteins. Adv. Protein Chem. 29, 183.CrossRefGoogle ScholarPubMed
Wertz, D. H. & Scheraga, H. A. (1977). The influence of water on protein structure. An analysis of the preferences of amino acid residues for the inside or outside and for specific conformations in a protein molecule. Macromolecules (submitted).Google Scholar
Wetlaufer, D. B. (1973). Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. natn. Acad. Sci., U.S.A. 70, 697701.CrossRefGoogle ScholarPubMed
Wetlaufer, D. B. & Ristow, S. (1973). Acquisition of three-dimensional structure of proteins. A. Rev. Biochem. 42, 135–58.CrossRefGoogle ScholarPubMed
Wetlaufer, D. B., Rose, G. D. & Taaffe, L. (1976). Orientation of structural segments in globular proteins. Biochemistry, N.Y. 15, 5154–7.CrossRefGoogle ScholarPubMed
Wilhelm, J. M. & Haselkorn, R. (1970). The chain growth rate of T4 lysozyme in vitro. Proc. natn. Acad. Sci., U.S.A. 65, 388–94.CrossRefGoogle ScholarPubMed
Wu, T. T., Fitch, W. M. & Margoliash, E. (1974). The information content of protein amino acid sequences. A. Rev. Biochem. 43, 539–66.CrossRefGoogle ScholarPubMed
Wüthrich, K., Grathwohl, C. & Schwyzer, R. (1974). Cis, trans, and nonplanar peptides bonds in oligopeptides: 13C NMR studies. In Peptides, Polypeptides and Proteins (ed. Blout, E. R., Bovey, F. A., Goodman, M. and Lotan, N.), pp. 300–7. New York: John Wiley.Google Scholar
Wyckoff, H. W., Tsernoglou, D., Hanson, A. W., Knox, J. R., Lee, B. & Richards, F. M. (1970). The three-dimensional structure of ribonuclease-S. J. biol. Chem. 245, 305–28.CrossRefGoogle ScholarPubMed
Yonath, A., Sielecki, A., Moult, J., Podjarny, A. & Traub, W. (1977 a). Crystallographic studies of protein denaturation and renaturation. I. Effects of denaturants on volume and X-ray pattern of cross-linked tri- clinic lysozyme crystals. Biochemistry, N.Y. 16, 1413–7.CrossRefGoogle Scholar
Yonath, A., Podjarny, A., Honig, B., Sielecki, A. & Traub, W. (1977 b). Crystallographic studies of protein denaturation and renaturation. 2. Sodium dodecyl sulfate induced structural changes in triclinic lysozyme. Biochemistry, N.Y. 16, 1418–24.CrossRefGoogle ScholarPubMed
Zav'yalov, V. P. (1977). The possible pathways of self-organization of immunoglobulin domains. Biochem. biophys. Acta 490, 506–14.Google ScholarPubMed
Zimm, B. H. & Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. J. chem. Phys. 31, 526–35.CrossRefGoogle Scholar
Zimmerman, S. S. & Scheraga, H. A. (1975). The influence of short-range interactions in peptides and proteins. In Peptides: Chemistry, Structure and Biology (ed. Walter, R. and Meienhofer, J.), pp. 263–9. Ann Arbor: Ann Arbor Science.Google Scholar
Zimmerman, S. S. & Scheraga, H. A. (1976). Stability of cis, trans, and non- planar peptide groups. Macromolecules 9, 408–16.CrossRefGoogle Scholar
Zimmerman, S. S. & Scheraga, H. A. (1977 a). Influence of local interactions on protein structure. I. Conformational energy studies of N-acetyl-N'methyl amides of Pro-X and X-Pro dipeptides. Biopolymers 16, 811–43.CrossRefGoogle Scholar
Zimmerman, S. S. & Scheraga, H. A. (1977 b). Influences of local interactions on protein structure. II, III, IV. Biopolymers. (Submitted).Google Scholar
Zimmerman, S. S. & Scheraga, H. A. (1977 c). Conformational analysis of the melanotropin-release inhibiting factor H-Pro-L-Leu-Gly-NH2. Biopolymers. (To be submitted.)Google Scholar
Zimmerman, S. S., Pottle, M. S., Némethy, G. & Scheraga, H. A. (1977 a). Conformational analysis of the twenty naturally occurring amino acids residues using ECEPP. Macromolecules 10, 19.CrossRefGoogle Scholar
Zimmerman, S. S., Shipman, L. L. & Scheraga, H. A. (1977 b). Bends in globular proteins. A statistical mechanical analysis of the conformational space of dipeptides and proteins. J. Phys. chem. 81, 614–22.CrossRefGoogle Scholar