Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T17:45:18.578Z Has data issue: false hasContentIssue false

Trypanosoma (Nannomonas) congolense: molecular characterization of a new genotype from Tsavo, Kenya

Published online by Cambridge University Press:  06 April 2009

P. A. O. Majiwa
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
M. Maina
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
J. N. Waitumbi
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, Kenya
S. Mihok
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
E. Zweygarth
Affiliation:
Kenya Trypanosomiasis Research Institute (KETRI), P.O. Box 362, Kikuyu, Kenya and Institut für Parasitologie und Tropenveterinärmedizin, Freie Universität Berlin, Berlin, Germany

Summary

Trypanosoma (Nannomonas) congolense comprises morphologically identical but genetically heterogeneous parasites infective to livestock and other mammalian hosts; three different genotypes of this parasite have been described previously. Restriction enzyme fragment length polymorphisms (RFLPs) in both kinetoplast DNA minicircle and nuclear DNA sequences, and randomly amplified polymorphic deoxyribonucleic acid (RAPD) patterns have been used here to demonstrate the existence of another type of T. (N.) congolense that is genotypically distinct from those that have so far been characterized at the molecular level. A highly repetitive, tandemly arranged DNA sequence and oligonucleotide primers, for use in polymerase chain reaction (PCR) amplification are described, which can be used for specific identification of the trypanosome and its distinction from others within the Nannomonas subgenus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baltz, T., Baltz, D., Giroud, C. & Crockett, J. (1985). Cultivation in a semi-defined medium of animal-infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. European Molecular Biology Organization Journal 4, 1273–7.CrossRefGoogle Scholar
Boothroyd, J. C. & Cross, G. A. M. (1982). Transcripts coding for the variant surface glycoproteins of Trypanosoma brucei have a short, identical exon at their 5′ end. Gene 20, 281–9.CrossRefGoogle Scholar
Brun, R. & Schönenberger, M. (1979). Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Tropica 36, 289–92.Google Scholar
Brun, R. & Schönenberger, M. (1981). Stimulating effect of citrate and cis-aconitate on the transformation of Trypanosoma brucei bloodstream forms to procyclic forms in vitro. Zeitschrift f¨r Parasitenkunde 66, 1724.CrossRefGoogle ScholarPubMed
Cook, G. A. & Donelson, J. E. (1987). Miniexon gene repeats of Trypanosoma (Nannomonas) congolense have internal repeats of 190 base pairs. Molecular and Biochemical Parasitology 25, 113–22.CrossRefGoogle ScholarPubMed
De Lange, T., Berkvens, T. M. M., Veerman, H. J. G., Frasch, A. C. C., Barry, J. D. & Borst, P. (1984 a). Comparison of genes coding for the common 5′ terminal of messenger RNAs in three trypanosome species. Nucleic Acids Research 12, 4431–43.CrossRefGoogle ScholarPubMed
De Lange, T., Michels, P. A. M., Veerman, H. J. G., Cornelissen, A. W. C. A. & Borst, P. (1984 b). Many trypanosome messenger RNAs share a common 5′ terminal sequence. Nucleic Acids Research 12, 3777–90.CrossRefGoogle Scholar
Dickin, S. K. & Gibson, W. C. (1989). Hybridization with repetitive probe reveals the presence of small chromosomes in Trypanosoma vivax. Molecular and Biochemical Parasitology 33, 135–42.CrossRefGoogle ScholarPubMed
Dukes, P., McNamara, J. J. & Godfrey, D. G. (1991). Elusive trypanosomes. Annals of Tropical Medicine and Parasitology 85, 2132.CrossRefGoogle ScholarPubMed
Feinberg, A. P. & Vogelstein, B. (1983). A technique for radio-labelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle Scholar
Gashumba, J. K. (1986). Two enzymatically distinct stocks of Trypanosoma congolense. Research in Veterinary Science 40, 411–12.CrossRefGoogle Scholar
Gibson, W. C., Dukes, P. & Gashumba, J. K. (1988). Species-specific DNA probes for the identification of African trypanosomes in tsetse flies. Parasitology 97, 6373.CrossRefGoogle ScholarPubMed
Godfrey, D. G. (1961). Types of Trypanosoma congolense. II. Differences in the courses of infection. Annals of Tropical Medicine and Parasitology 55, 154–66.CrossRefGoogle ScholarPubMed
Godfrey, D. G. (1982). Diversity within Trypanosoma congolense. In Perspectives in Trypanosomiasis Research (ed. Baker, J. R.), pp. 3746. London; John Wiley.Google Scholar
Hide, G. & Tait, A. (1991). The molecular epidemiology of parasites. Experientia 47, 128–42.CrossRefGoogle ScholarPubMed
Hoare, C. A. (1970). Systematic description of the mammalian trypanosomes of Africa. In The African Trypanosomiases, (ed. Mulligan, H. W.), pp. 359. London: George Allen and Unwin.Google Scholar
Jenni, L., Marti, S., Schweizer, J., Betschart, B., Le Page, R. W. F., Wells, J. M., Tait, A., Paindavoine, P., Pays, E. & Steinert, M. (1986). Hybrid formation between African trypanosomes during cyclical transmission. Nature, London 322, 173–5.CrossRefGoogle ScholarPubMed
Kimmel, B. E., Ole-Moi Yoi, O. K. & Young, J. R. (1987). Ingi, a 5·2 kb dispersed sequence element from Trypanosoma brucei that carries half of a smaller mobile element at either end and has homology with mammalian lines. Molecular and Cellular Biology 7, 1465–75.Google ScholarPubMed
Knowles, G., Betschart, B., Kukla, B. A., Scott, J. R. & Majiwa, P. A. O. (1988). Genetically discrete populations of Trypanosoma congolense from livestock on the Kenya Coast. Parasitology 96, 461–74.CrossRefGoogle Scholar
Kwok, S. & Sninsky, J. J. (1989). Application of PCR to the detection of human infectious diseases. In PCR Technology: Principles and Applications for DNA Amplification, (ed. Erlich, H. A.), pp. 235244. New York: Stockton Press.CrossRefGoogle Scholar
Majiwa, P. A. O., Hamers, R., van Meirvenne, N. & Matthyssens, G. (1986). Evidence for genetic diversity in Trypanosoma (Nannomonas) congolense. Parasitology 93, 291304.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Masake, R. A., Nantulya, V. M., Hamers, R. & Matthyssens, F. (1985). Trypanosoma (Nannomonas) congolense: identification of two karyotypic groups. European Molecular Biology Organization Journal 4, 3307–13.CrossRefGoogle ScholarPubMed
Majiwa, P. A. O., Ole-Moi Yoi, O. K. & Nantulya, V. M. (1992). New techniques for diagnosis of the African trypanosomiases. AgriBiotech News, (in the Press).Google Scholar
Majiwa, P. A. O. & Otieno, L. H. (1990). Recombinant DNA probes reveal simultaneous infection of tsetse flies with different trypanosomes. Molecular and Biochemical Parasitology 40, 245–54.CrossRefGoogle Scholar
McNamara, J. J., Gibson, W. C., Mohammed, G., Snow, W. F. & Godfrey, D. G. (1991). New technology, old protozoology and a new species of Nannomonas. Transactions of the Royal Society for Tropical Medicine and Hygiene 85, 695.Google Scholar
McNamara, J. J. & Snow, W. F. (1991). Improved identification of Nannomonas infections in tsetse flies from The Gambia. Acta Tropica 48, 127–36.CrossRefGoogle Scholar
Mihok, S., Munyoki, E., Brett, R. A., Jonyo, J. F., Röttcher, D., Majiwa, P. A. O., Kang'ethe, E. K., Kaburia, H. F. A. & Zweygarth, E. (1992). Trypanosomiasis and the conservation of black rhinoceros (Diceros biconis) at the Ngulia Rhino Sanctuary, Tsavo West National Park, Kenya. African Journal of Ecology 30, 103–15.CrossRefGoogle Scholar
Moser, D. R., Cook, G. A., Ochs, D. E., Bailey, C. P., McKane, M. R. & Donelson, J. E. (1989). Detection of Trypanosoma congolense and Trypanosoma brucei subspecies by DNA amplification using the polymerase chain reaction. Parasitology 99, 5766.CrossRefGoogle ScholarPubMed
Murray, M., Murray, P. K. & McIntyre, W. I. M. (1977). An improved parasitological technique for diagnosis of African trypanosomiasis. Transactions of the Royal Society of Tropical Medicine and Hygiene 71, 325–6.CrossRefGoogle ScholarPubMed
Nelson, R. G., Parsons, M., Selkirk, M., Newport, G., Barr, P. J. & Agabian, N. (1984). Sequences homologous to the variant antigen mRNA spliced leader in Trypanosomatidae which do not undergo antigenic variation. Nature, London 308, 665–7.CrossRefGoogle Scholar
Ntambi, J. M., Ryan, K. A. & Englund, P. T. (1987). The replication origin in kinetoplast DNA minicircles from Trypanosoma equiperdum. In Molecular Strategies of Parasitic Inversion, (ed. Agabian, N., Goodman, H. & Nogueira, N.), pp. 113120. New York: Alan R. Liss, Inc.Google Scholar
Nyeko, J. H. P., Ole-Moi Yoi, O. K., Majiwa, P. A. O., Otieno, L. H. & Ociba, P. M. (1990). Characterization of trypanosome isolates from Uganda using species-specific DNA probes reveals predominance of mixed infections. Insect Science and its Application 11, 271–80.Google Scholar
Paindavoine, P., Zampetti-Bosseler, P., Pays, E., Schweizer, J., Guyaux, M., Jenni, L. & Steinert, M. (1986). Trypanosome hybrids generated in tsetse flies by nuclear fusion. European Molecular Biology Organization Journal 5, 3632–6.CrossRefGoogle ScholarPubMed
Pettebsson, U. & Hyypia, T. (1985). Nucleic acid hybridization: an alternative tool in diagnostic microbiology. Immunology Today 6, 268–72.CrossRefGoogle Scholar
Ray, D. S., Birkenmeyer, L. & Sugisaki, H. (1987). Sequence organization and replication of the kinetoplast DNA minicircles of Crithidia fasciculata. In Molecular Strategies of Parasitic Inversion, (ed. Agabian, N., Goodman, H. & Nogueira, N.), pp. 99112. New York: Alan R. Liss, Inc.Google Scholar
Ross, C. (1987). Trypanosoma congolense: differentiation of metacyclic trypanosomes in culture depends on the concentration of glutamine or proline. Acta Tropica 44, 293301.Google ScholarPubMed
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.Google Scholar
Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-termination inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463–7.CrossRefGoogle Scholar
Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98, 503–17.CrossRefGoogle ScholarPubMed
Stephen, L. E. (1986). Trypanosomiasis: A Veterinary Perspective. Oxford: Pergamon Press.Google Scholar
Tanksley, S. D., Young, N. D., Paterson, A. H. & Bonierbale, M. W. (1989). RFLP mapping in plant breeding: new tools for an old science. Bio/Technology 7, 257–64.Google Scholar
Viscindi, R. P. & Yolken, R. H. (1987). Molecular diagnosis of infectious diseases by nucleic acid hybridization. Molecular and Cellular Probes 1, 314.CrossRefGoogle Scholar
Welsh, J., Petersen, C. & McClelland, M. (1991). Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Research 19, 303–6.CrossRefGoogle ScholarPubMed
Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18, 6531–5.CrossRefGoogle ScholarPubMed
World Health Organization (1979). The African trypanosomiases: WHO Technical Report Series No. 635, pp. 1–2. Geneva: World Health Organization.Google Scholar
World Health Organization (1986). Epidemiology and control of African trypanosomiasis: WHO Technical Report Series No. 739, pp. 97–101. Geneva: World Health Organization.Google Scholar
Yabu, Y., Takayanagi, T. & Sato, S. (1989). Long-term culture and cloning system for Trypanosoma brucei gambiense bloodstream forms in semi-defined medium in vitro. Parasitology Research 76, 93–7.CrossRefGoogle ScholarPubMed
Young, C. J. & Godfrey, D. G. (1983). Enzyme polymorphism and the distribution of Trypanosoma congolense isolates. Annals of Tropical Medicine and Parasitology 77, 467–81.CrossRefGoogle ScholarPubMed
Zweygarth, E., Gray, M. A. & Kaminsky, R. (1991). Axenic in vitro cultivation of Trypanosoma vivax trypomastigote forms. Tropical Medicine and Parasitology 42, 45–8.Google ScholarPubMed