Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-19T02:20:31.848Z Has data issue: false hasContentIssue false

The defence reactions of insects to metazoan parasites

Published online by Cambridge University Press:  06 April 2009

George Salt
Affiliation:
Department of Zoology and King's College, University of Cambridge

Extract

1. Defence reactions to metazoan parasites have been reported in fourteen orders of insects. The observations are brought together and reviewed in the first part of the paper.

2. Examination of the various accounts that have been given shows that blood cells are always involved in insect defence reactions. They act by forming a cellular capsule, from which a connective-tissue envelope is usually developed, and in which melanin is often deposited.

3. The reaction of the epidermal cells at perforations made by parasites is of the nature of wound-healing, and plays no part in defence against metazoan parasites after they have entered the body.

4. Although several other tissues have been implicated, there is insufficient evidence to show that any of them make defence reactions, their response being limited to processes of regeneration.

5. It is concluded that the blood cells of insects are their only known agents of defence to internal metazoan parasites.

6. The principal groups of metazoan parasites infesting insects are considered in the third part of the paper, in order to see how the defence reactions made to them are related to their mode of attack and to the nature and consequences of their parasitism.

7. Most parasites elicit a defence reaction when they are in unusual hosts.

8. Some parasites, at certain stages of their life-history, are able to avoid eliciting a defence reaction in their usual hosts.

9. Some parasites elicit a defence reaction in their usual hosts but are able either to endure it in a dormant state or to resist it.

10. General problems of host specificity in relation to defence reactions are discussed. It is concluded that analysis of the stimuli that produce defence reactions has not yet gone far enough to explain the phenomena.

11. The effects of insect defence reactions on metazoan parasites range from no perceptible effect to destruction of the parasite.

12. The defence reactions of insects are influenced by the species, genetic strain, stage, instar, size, health and physiological state of the host; and by the species, genetic strain, physical and physiological activity, and health of the parasite. Environmental temperature and the presence of other parasites of the same or different species also have effects on the reactions.

13. A brief survey of defence reactions made by invertebrates other than insects shows that encapsulation has been reported in Annelida, Mollusca, Crustacea, Acarina, and larval echinoderms. So far as it goes, the survey does not reveal in these other groups any reaction to metazoan parasites of a kind radically different from the reactions observed in insects.

14. The historical development and present state of our knowledge of insect defence reactions is traced.

15. The reactions made by insects to innocuous parasites are of theoretical interest but of little consequence to the species concerned. It is their effect on potentially dangerous parasites that determines the value of defence reactions. Consideration of the evidence suggests that the protection afforded to insects by their defence reactions is greater than has been generally supposed.

16. The review makes apparent many gaps in our knowledge of the phenomena. A few of the outstanding problems are mentioned.

I am indebted to Mr R. T. Hughes of the Balfour Library for helping me to obtain journals not available in Cambridge; to Mr M. J. Ashby for the photography necessary in the preparation of the figures; and to Miss G. M. Edwards for her careful typing from my manuscript. The paper would not have been completed without the goodwill and assistance of two persons: Professor D. Keilin, F.R.S., encouraged me to continue and finish it when my effort flagged; my wife not only gave me positive help in many ways but also exercised great forbearance in allowing me to devote vacations and spare time to it.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1963

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alicata, J. E. (1935). Early developmental stages of nematodes occurring in swine. Tech. Bull. U.S. Dep. Agric. no. 489, pp. 196.Google Scholar
Allen, H. W. (1925). Biology of the red-tailed Tachina-fly, Winthemia quadripustulata. Tech. Bull. Miss. Agric. Exp. Sta. no. 12, pp. 132.Google Scholar
Allen, H. W. (1926). Life history of the variegated cutworm Tachina fly, Archytas analis. J. Agric. Res. 32, 417–35.Google Scholar
Arnold, J. W. (1952). The haemocytes of the Mediterranean flour moth, Ephestia kühniella Zell. Canad. J. Zool. 30, 352–64.Google Scholar
Baer, J. G. (1944). Immunité et réactions immunitaires chez les Invertébrés. Schweiz. Z. Path. 7, 442–62.Google Scholar
Bahr, P. H. (1912). Filariasis and Elephantiasis in Fiji. vii+192 pp. London: Witherby and Co.Google Scholar
Basir, M. A. (1949). On a larval nematode from an insect with a note on the genera Thubunaea Seurat, 1914, and Physalopteroides Wu & Liu, 1940. J. Parasit. 35, 301–5.Google Scholar
Baylis, H. A. (1944). Observations on the nematode Mermis nigrescens and related species. Parasitology, 36, 122–32.Google Scholar
Beard, R. L. (1942). On the formation of the tracheal funnel in Anasa tristis DeG. induced by the parasite Trichopoda pennipes Fabr. Ann. Ent. Soc. Amer. 35, 6875.Google Scholar
Bess, H. A. (1936). The biology of Leschenaultia exul Townsend, a tachinid parasite of Malacosoma americana Fabricius and Malacosoma disstria Hubner. Ann. Ent. Soc. Amer. 29, 593613.Google Scholar
Bess, H. A. (1939). Investigations on the resistance of mealybugs (Homoptera) to parasitization by internal hymenopterous parasites, with special reference to phagocytosis. Ann. Ent. Soc. Amer. 32, 189226.Google Scholar
Biliotti, E. (1958 a). Réaction de l'hôte au parasitisme par les larves de Tachinaires. C.R. Acad. Sci., Paris, 247, 1241–3.Google Scholar
Biliotti, E. (1958 b). Eléments de la spécificité parasitaire chez les Tachinaires. Proc. 10th Int. Congr. Ent. 4, 751–7.Google Scholar
Boese, G. (1936). Der Einfluss tierischer Parasiten auf den Organismus der Insekten. Z. Parasitenk. 8, 243–84.Google Scholar
Bosch, R. & Dietrick, E. J. (1959). The inter-relationships of Hypera brunneipennis and Bathyplectes curculionis in Southern California. Ann. Ent. Soc. Amer. 52, 609–16.Google Scholar
Bradley, W. G. & Burgess, E. D. (1934). The biology of Cremastus flavo-orbitalis (Cameron), an ichneumonid parasite of the European corn borer. Tech. Bull. U.S. Dep. Agric. no. 441, pp. 115.Google Scholar
Briggs, J. D. (1958). Humoral immunity in lepidopterous larvae. J. Exp. Zool. 138, 155–88.Google Scholar
Bronskill, J. F. (1960). The capsule and its relation to the embryogenesis of the ichneumonid parasitoid Mesoleius tenthredinis Morl. in the larch sawfly, Pristiphora erichsonii (Htg.). Canad. J. Zool. 38, 769–75.Google Scholar
Brown, F. J. (1927). On Crepidostomum farionis O. F. Müll. (= Stephanophiala laureata Zeder), a distome parasite of the trout and grayling. Parasitology, 19, 8699.Google Scholar
Brown, F. J. (1933). On the excretory system and life history of Lecithodendrium chilostomum (Mehl.) and other bat trematodes, with a note on the life history of Dicrocoelium dendriticum (Rudolphi). Parasitology, 25, 317–28.Google Scholar
Brumpt, E. (1931). Némathelminthes parasites des rats sauvages (Epimys norvegicus) de Caracas. 1. Protospirura bonnei. Infections expérimentales et spontanées. Formes adultes et larvaires. Ann. Parasit. hum. comp. 9, 344–58.Google Scholar
Bruyne, C. (1895). Contribution à l'étude de la phagocytose. Arch. Biol., Paris, 14, 161241.Google Scholar
Burns, W. C. (1961). Penetration and development of Allassogonoporus vespertilionis and Acanthatrium oregonense (Trematoda: Lecithodendriidae) cercariae in caddis fly larvae. J. Parasit. 47, 927–32.Google Scholar
Buttner, A. (1951). La progénèse chez les trématodes digénétiques. Ann. Parasit. hum. comp. 26, 138–89.Google Scholar
Cameron, G. R. (1932). Inflammation in earthworms. J. Path. Bact. 35, 933–72.Google Scholar
Cameron, G. R. (1934). Inflammation in the caterpillars of Lepidoptera. J. Path. Bact. 38, 441–66.Google Scholar
Cantacuzène, J. (1923). Le problème de l'immunité chez les invertébrés. C.R. Soc. Biol., Paris (Célébr. 75e Ann.), pp. 48119.Google Scholar
Caullery, M. (1922). Le Parasitisme et la Symbiose, 400 pp. Paris: Doin.Google Scholar
Chabaud, A. G. (1954). Sur le cycle évolutif des Spirurides et des Nématodes ayant une biologie comparable. Ann. Parasit. hum. comp. 29, 4288, 206–49, 358–425.Google Scholar
Chen, H. T. (1934). Reactions of Ctenocephalides felis to Dipylidium caninum. Z. Parasitenk. 6, 603–37.Google Scholar
Cheng, T. C. (1957). A study of the metacercaria of Crepidostomum cornutum (Osborn, 1903) (Trematoda: Allocreadiidae). Proc. Helm. Soc. Wash. 24, 107–9.Google Scholar
Chernin, E. (1962). The unusual life-history of Daubaylia potomaca (Nematoda: Cephalobidae) in Australorbis glabratus and in certain other freshwater snails. Parasitology, 52, 459–81.Google Scholar
Clausen, C. P. (1940). Entomophagous Insects. x+688 pp. New York: McGraw-Hill.Google Scholar
Clausen, C. P., Jaynes, H. A. & Gardner, T. R. (1933). Further investigations of the parasites of Popillia japonica in the Far East. Tech. Bull. U.S. Dep. Agric. no. 366, pp. 158.Google Scholar
Cobb, N. A. (1925). A new mermithid infesting another nema. J. Parasit. 11, 217–18.Google Scholar
Compere, H. & Smith, H. S. (1932). The control of the citrophilus mealybug, Pseudococcus gahani, by Australian parasites. Hilgardia, 6, 585618.Google Scholar
Cort, W. W. (1915). Gordius larvae parasitic in a trematode. J. Parasit. 1, 198–9.Google Scholar
Couturier, A. (1951). Un nouveau mode de développement chez un Mermithidae (Nematoda). C.R. Acad. Sci., Paris, 232, 884–6.Google Scholar
Cram, E. B. (1931). Developmental stages of some nematodes of the Spiruroidea parasitic in poultry and game birds. Tech. Bull. U.S. Dep. Agric. no. 227, pp. 127.Google Scholar
Cram, E. B. (1935). New avian and insect hosts for Gongylonema ingluvicola (Nematoda: Spiruridae). Proc. Helm. Soc. Wash. 2, 59.Google Scholar
Crawford, W. W. (1937). A further contribution to the life history of Alloglossidium corti (Lamont), with especial reference to dragonfly naiads as second intermediate hosts. J. Parasit. 23, 389–99.Google Scholar
Crawford, W. W. (1943). Colorado trematode studies. 1. A further contribution to the life history of Crepidostomum farionis (Müller). J. Parasit. 29, 379–84.Google Scholar
Cuénot, L. (1893). Études physiologiques sur les Gastéropodes Pulmonés. Arch. Biol., Paris, 12, 683740.Google Scholar
Cuénot., L. (1894). Études physiologiques sur les Crustacés Décapodes. Arch. Biol., Paris, 13, 245303.Google Scholar
Cuénot, L. (1895). Études physiologiques sur les Orthoptères. Arch. Biol., Paris, 14, 293341.Google Scholar
Cuénot, L. (1897). Études physiologiques sur les Oligochètes. Arch. Biol., Paris, 15, 79124.Google Scholar
Danini, E. S. (1925). Beiträge zur vergleichenden Histologie des Blutes und des Bindegewebes. III. Über die entzundliche Bindegewebsneubildung beim Flusskrebs (Potamobius leptodactylus). Z. mikr.-anat. Forsch. 3, 558608.Google Scholar
Danneel, R. (1943). Melaninbildende Fermente bei Drosophila melanogaster. Biol. Zbl. 63, 377–94.Google Scholar
Danneel, R. (1946). Melaninbildende Fermente bei Drosophila melanogaster. II. Nachweis einer Dehydrase Neuformulierung der Tyrosinase-Tyrosin-Reaktion. Biol. Zbl. 65, 115–19.Google Scholar
Day, M. F. (1952). Wound healing in the gut of the cockroach Periplaneta. Aust. J. Sci. Res. B, 5, 282–9.Google Scholar
DeGiusti, D. L. (1949 a). The life cycle of Leptorhynchoides thecatus (Linton), an acanthocephalan of fish. J. Parasit. 35, 437–60.Google Scholar
DeGiusti, D. L. (1949 b). Partial development of Echinorhynchus coregoni in Hyalella azteca and the cellular reaction of the amphipod to the parasite. J. Parasit. 35, (suppl.), p. 31.Google Scholar
Dennell, R. (1958). The amino acid metabolism of a developing insect cuticle: the larval cuticle and puparium of Calliphora vomitoria. III. The formation of the puparium. Proc. Roy. Soc. B, 149, 176–83.Google Scholar
Denton, J. F. (1945). Studies on the life history of Brachylecithum americanum n.sp., a liver fluke of passerine birds. J. Parasit. 31, 131–41.Google Scholar
Deslongchamps, E. (1824). Encyclopédie méthodique. Histoire Naturelle des Zoophytes, 2, 396–7.Google Scholar
Dollfus, R. P. (1946). Parasites (Animaux et Végétaux) des Helminthes. Encycl. biol. 27, viii + 482 pp.Google Scholar
Dollfus, R. P. (1952). Quelques Oxyuroidea de myriapodes. Ann. Parasit. hum. comp. 27, 143236.Google Scholar
Duncan, J. T. (1926). On a bactericidal principle present in the alimentary canal of insects and arachnids. Parasitology, 18, 238–52.Google Scholar
Dupuis, C. (1957). Développement expérimental de larves de Phasiinae (Diptera, Larvaevoridae) chez un hôte non spécifique. C.R. Acad. Sci., Paris, 245, 1579–80.Google Scholar
Durham, H. E. (1891). On wandering cells in echinoderms, etc., more especially with regard to excretory functions. Quart. J. Micr. Sci. 33, 81121.Google Scholar
Eckstein, F. (1931). Über Immunität bei Insekten. Anz. Schädlingsk. 7, 4955.Google Scholar
Ermin, R. (1939). Über Bau und Funktion der Lymphocyten bei Insekten (Periplaneta americana L.). Z. Zellforsch. 29, 613–69.Google Scholar
Fenton, F. A. (1918). The parasites of leaf-hoppers. With special reference to the biology of the Anteoninae. Ohio J. Sci. 18, 177212, 243–78, 285–96.Google Scholar
Fisher, R. C. (1961). A study in insect multiparasitism. II. The mechanism and control of competition for possession of the host. J. Exp. Biol. 38, 605–28.Google Scholar
Flanders, S. E. (1934). The secretion of the colleterial glands in the parasitic chalcids. J. Econ. Ent. 27, 861–2.Google Scholar
Flanders, S. E. (1937). Starvation of developing parasites as an explanation of immunity. J. Econ. Ent. 30, 970–1.Google Scholar
Flanders, S. E. (1938). Cocoon formation in endoparasitic chalcidoids. Ann. Ent. Soc. Amer. 31, 167–80.Google Scholar
Flanders, S. E. (1940). Environmental resistance to the establishment of parasitic Hymenoptera. Ann. Ent. Soc. Amer. 33, 245–53.Google Scholar
Foster, A. O. & Johnson, C. M. (1939). A preliminary note on the identity, life-cycle, and pathogenicity of an important nematode parasite of captive monkeys. Amer. J. Trop. Med. 19, 265–72.Google Scholar
Fuchs, G. (1915). Die Naturgeschichte der Nematoden und einiger anderer Parasiten. 1. Des Ips typographus L. 2. Des Hylobius abietis L. Zool. Jb. (Abt. Syst.), 38, 109222.Google Scholar
Fülleborn, F. (1929). Filariosen des Menschen. Handbuch der pathogenen Mikroorganismen, 3rd edn., edit. Kolle, Kraus and Uhlenhuth, , 6, 1043–224. Jena: Fischer.Google Scholar
Galeb, O. (1878). Observations et expériences sur les migrations du Filaria rytipleurites, parasite des blattes et des rats. C.R. Acad. Sci., Paris, 87, 75–7.Google Scholar
Giard, A. (1896). Sur le parasitisme des Monstrillidae. C.R. Acad. Sci., Paris, 123, 836–9.Google Scholar
Gilmore, J. U. (1938). Notes on Apanteles congregatus (Say) as a parasite of tobacco horn-worms. J. Econ. Ent. 31, 712–15.Google Scholar
Goodrich, H. P. (1928). Reactions of Gammarus to injury and disease, with notes on some microsporidial and fungoid diseases. Quart. J. Micr. Sci. 72, 325–53.Google Scholar
Graff, L. (1903). Die Turbellarien als Parasiten und Wirthe. vi+66 pp. Graz: Leuschner and Lubensky.Google Scholar
Grieve, E. G. (1937). Studies on the biology of the damselfly Ischnura verticalis Say, with notes on certain parasites. Ent. Amer. 17, 121–54.Google Scholar
Griffiths, D. C. (1960). Immunity of aphids to insect parasites. Nature, Lond., 187, 346.Google Scholar
Griffiths, D. C. (1961). The development of Monoctonus paludum Marshall (Hym., Braconidae) in Nasonovia ribis-nigri on lettuce, and immunity reactions in other lettuce aphids. Bull. Ent. Res. 52, 147–63.Google Scholar
Gustafson, P. V. (1942). A peculiar larval development of Rhabdochona spp. (Nematoda, Spiruroidea). J. Parasit. 28, (suppl.), 30.Google Scholar
Hadorn, E. & Walker, I. (1960). Drosophila und Pseudeucoila. 1. Selektionsversuche zur Steigerung der Abwehrreaktion des Wirtes gegen den Parasiten. Rev. suisse Zool. 67, 216–25.Google Scholar
Hall, J. E. (1959). Studies on the life history of Mosesia chordeilesia McMullen, 1936 (Trematoda: Lecithodendriidae). J. Parasit. 45, 327–36.Google Scholar
Hawboldt, L. S. (1947). Bessa selecta (Meigen) as a parasite of Gilpinia hercyniae (Hartig). Canad. Ent. 79, 84104.Google Scholar
Hendrick, L. R. (1935). The life history and morphology of Spiroxys contortus (Rudolphi); Nematoda: Spiruridae. Trans. Amer. Micr. Soc. 54, 307–35.Google Scholar
Herter, K. (1937). Die Ökologie der Hirudineen. Bronn's Klassen und Ordnungen des Tierreichs, Bd. 4, Abt. 3, Buch 4, Teil 2, 321496.Google Scholar
Highby, P. R. (1943 a). Mosquito vectors and larval development of Dipetalonema arbuta Highby (Nematoda) from the porcupine, Erethizon dorsatum. J. Parasit. 29, 243–52.Google Scholar
Highby, P. R. (1943 b). Vectors, transmission, development, and incidence of Dirofilaria scapiceps (Leidy, 1886) (Nematoda) from the snowshoe hare in Minnesota. J. Parasit. 29, 253–9.Google Scholar
Hill, G. F. (1918). Relationship of insects to parasitic diseases in stock. Proc. Roy. Soc. Vict. 31, 11107.Google Scholar
Hinton, H. E. (1954). Insect blood. Sci. Progr. Twent. Cent. 42, 684–96.Google Scholar
Hobmaier, M. (1941). Extramammalian phase of Physaloptera maxillaris Molin, 1860 (Nematoda). J. Parasit. 27, 233–5.Google Scholar
Hollande, A. C. (1920). Réactions des tissus du Dytiscus marginalis L. au contact de larves de distome enkystées et fixées aux parois du tube digestif de l'insecte. Arch. Zool. exp. gén. 59, 543–63.Google Scholar
Hu, S. M. K. (1939). Observations of the development of filarial larvae during the winter season in Shanghai region. Amer. J. Hyg. 29, D 6774.Google Scholar
Huff, C. G. (1940). Immunity in invertebrates. Physiol. Rev. 20, 6888.Google Scholar
Hyman, L. H. (1951). The Invertebrates: Acanthocephala, Aschelminthes, and Entoprocta. vii+572 pp. New York: McGraw-Hill.Google Scholar
Hynes, H. B. N. & Nicholas, W. L. (1958). The resistance of Gammarus spp. to infection by Polymorphus minutus (Goeze, 1782) (Acanthocephala). Ann. Trop. Med. Parasit. 52, 376–83.Google Scholar
Iwasaki, Y. (1927). Sur quelques phénoménes provoqués chez les chenilles de papillons par l'introduction de corps étrangers. Arch. Anat. micr. 23, 319–46.Google Scholar
Jenni, W. (1951). Beitrag zur Morphologie und Biologie der Cynipide Pseudeucoila bochei Weld, eines Larvenparasiten von Drosophila melanogaster Meig. Acta zool., Stockh., 32, 177254.Google Scholar
Johnson, B. (1959). Studies on the degeneration of the flight muscles of alate aphids. II. Histology and control of muscle breakdown. J. Ins. Physiol. 3, 367–77.Google Scholar
Johnson, G. E. (1913). On the nematodes of the common earthworm. Quart. J. Micr. Sci. 58, 605–52.Google Scholar
Jones, J. C. (1959). A phase contrast study of the blood-cells in Prodenia larvae (Order Lepidoptera). Quart. J. Micr. Sci. 100, 1723.Google Scholar
Jones, J. C. (1962). Current concepts concerning insect hemocytes. Amer. Zoologist, 2, 209–46.Google Scholar
Joyeux, C. (1920). Enkystement d'une cercaire du type Cercaria armata chez un turbellarié d'eau douce. Bull. Soc. Path. exot. 13, 182–6.Google Scholar
Kaiser, E. (1893). Die Acanthocephalen und ihre Entwickelung. Bibl. Zool. II, Leipzig, 7 (2), 1148.Google Scholar
Kamal, M. (1939). Biological studies on some hymenopterous parasites of aphidophagous Syrphidae. Bull. Minist. Agric. Egypt, no. 207, pp. 1110.Google Scholar
Kartman, L. (1951). Notes on Tetrameres sp. (Nematoda, Spiruroidea) parasitic in the English sparrow in Hawaii. Pacif. Sci. 5, 252–5.Google Scholar
Kartman, L. (1953). Factors influencing infection of the mosquito with Dirofilaria immitis (Leidy, 1856). Exp. Parasit. 2, 2778.Google Scholar
Kates, K. C. (1943). Development of the swine thorn-headed worm, Macracanthorhynchus hirudinaceus, in its intermediate host. Amer. J. Vet. Res. 4, 173–81.Google Scholar
Keilin, D. (1915). Recherches sur les larves de diptères cyclorhaphes. Bull. sci. Fr. Belg. 49, 15198.Google Scholar
Keilin, D. (1919). On the life-history and larval anatomy of Melinda cognata Meigen (Diptera Calliphorinae) parasitic in the snail Helicella (Heliomanes) virgata da Costa, with an account of the other Diptera living upon molluscs. Parasitology, 11, 430–55.Google Scholar
Keilin, D. (1925). Parasitic autotomy of the host as a mode of liberation of coelomic parasites from the body of the earthworm. Parasitology, 17, 170–2.Google Scholar
Keilin, D. & Tate, P. (1943). The larval stages of the celery fly (Acidia heraclei L.) and of the braconid Adelura apii (Curtis), with notes upon an associated parasitic yeast-like fungus. Parasitology, 35, 2736.Google Scholar
Keilin, D. & Thompson, W. R. (1915). Sur le cycle évolutif des Dryinidae, hyménoptères parasites des hemiptères homoptères. C.R. Soc. Biol., Paris, 78, 83–7.Google Scholar
Knight, R. A. & Pratt, I. (1955). The life-histories of Allassogonoporus vespertilionis Macy and Acanthatrium oregonense Macy (Trematoda: Lecithodendriidae). J. Parasit. 41, 248–55.Google Scholar
Knowles, R. & Basu, B. C. (1933). The nature of the so-called ‘Black Spores’ of Ross in malaria-transmitting mosquitoes. Indian J. Med. Res. 20, 757–76.Google Scholar
Krastin, N. I. (1949). [Elucidation of the life-cycle of Thelazia rhodesii (Demarest, 1927), parasitic in the eyes of cattle]. Helminth. Abstr. 18, 85.Google Scholar
Krull, W. H. (1935). Studies on the life history of a frog bladder fluke, Gorgodera amplicava Looss, 1899. Pap. Mich. Acad. Sci. 20, 697710.Google Scholar
Kushner, D. J. & Harvey, G. T. (1962). Antibacterial substances in leaves: their possible role in insect resistance to disease. J. Ins. Path. 4, 155–84.Google Scholar
Labeyrie, V. (1958). Importance du superparasitisme et son élimination chez Microgaster globatus Nees (Insecte hyménoptère braconide). C.R. Acad. Sci., Paris, 246, 3116–18.Google Scholar
Lartschenko, K. (1933). Die Unempfänglichkeit der Raupen von Loxostege sticticalis L. und Pieris brassicae L. gegen Parasiten. Z. Parasitenk. 5, 679707.Google Scholar
Lavoipierre, M. M. J. (1958). Studies on the host-parasite relationships of filarial nematodes and their arthropod hosts. II. The arthropod as a host to the nematode: a brief appraisal of our present knowledge, based on a study of the more important literature from 1878 to 1957. Ann. Trop. Med. Parasit. 52, 326–45.Google Scholar
Lazarenko, T. (1925). Beiträge zur vergleichenden Histologie des Blutes und des Bindegewebes. II. Die morphologische Bedeutung der Blut- und Bindegewebeelemente der Insekten. Z. mikr.-anat. Forsch. 3, 409–99.Google Scholar
Léger, L. (1897). Contribution è la connaissance des sporozoaires parasites des échinodermes. Étude sur le Lithocystis schneideri. Bull. sci. Fr. Belg. 30, 240–64.Google Scholar
Lerner, A. B. & Fitzpatrick, T. B. (1950). Biochemistry of melanin formation. Physiol. Rev. 30, 91126.Google Scholar
Liebman, E. (1946). On trephocytes and trephocytosis; a study on the role of leucocytes in nutrition and growth. Growth, 10, 291329.Google Scholar
Linstow, O. (1872). Ueber Selbstbefruchtung bei Trematoden. Arch. Naturgesch. 38, 15.Google Scholar
Linstow, O. (1877 a). Helminthologica. Arch. Naturgesch. 43, 118.Google Scholar
Linstow, O. (1877 b). Enthelminthologica. Arch. Naturgesch. 43, 173–98.Google Scholar
Linstow, O. (1887). Helminthologische Untersuchungen. Zool. Jb. (Abt. Syst.), 3, 97114.Google Scholar
Linstow, O. (1890). Ueber Allantonema und Diplogaster. Zbl. Bakt. 8, 489–93.Google Scholar
Linstow, O. (1892). Beobachtungen an Helminthenlarven. Arch. mikr. Anat. 39, 325–43.Google Scholar
Linstow, O. (1896). Helminthologische Mittheilungen. Arch. mikr. Anat. 48, 375–97.Google Scholar
Linstow, O. (1909). Distomum-Larven in einer Raupe. Zbl. Bakt. (Abt. I, Orig.), 49, 331–3.Google Scholar
Ludwig, H. (1905). Ein entoparasitischer Chaetopod in einer Tiefsee-Ophiure. Zool. Anz. 29, 397–9.Google Scholar
Manson-Bahr, P. H. (1960). Manson's Tropical Diseases, 15th edn. xiv+1177 pp. London: Cassell.Google Scholar
Maple, J. D. (1947). The eggs and first instar larvae of Encyrtidae and their morphological adaptations for respiration. Univ. Calif. Publ. Ent. 8, 25122.Google Scholar
Marchal, P. (1897). Les cécidomyies des céréales et leurs parasites. Ann. Soc. Ent. Fr. 66, 1105.Google Scholar
Marchal, P. (1904). Recherches sur la biologie et le développement des hyménoptères parasites. I. La polyembryonie specifique ou germinogonie. Arch. Zool. exp. gén. (4) 2, 257335.Google Scholar
Marchal, P. (1906). Recherches sur la biologie et le développement des hyménoptères parasites. II. Les Platygasters. Arch. Zool. exp. gén. (4) 4, 485640.Google Scholar
Marenzeller, E. (1895). Zoologische Ergebnisse. V. Echinodermen gesammelt 1893, 1894. Denkschr. Akad. Wiss. Wien, 62 (suppl.), 123–48.Google Scholar
Maupas, E. (1899). La mue et l'enkystement chez les Nématodes. Arch. Zool. exp. gén. 27, 563628.Google Scholar
Maw, M. G. (1960). Notes on the larch sawfly, Pristiphora erichsonii (Htg.) (Hymenoptera: Tenthredinidae), in Great Britain. Ent. Gaz. 11, 43–9.Google Scholar
Mayne, B. (1929). The nature of the ‘Black Spores’ associated with the malaria parasite in the mosquito and their relationship to the tracheal system. Indian J. med. Res. 17, 109–34.Google Scholar
Meissner, G. (1855). Beiträge zur Anatomie und Physiologie der Gordiaceen. Z. wiss. Zool. 7, 1140.Google Scholar
Mellini, E. (1956). Studi sui ditteri larvevoridi. III. Sturmia bella Meig. su Inachis io (Lepidoptera Nymphalidae). Boll. Ist. Ent. Univ. Bologna, 22, 6998.Google Scholar
Mellini, E. (1958). Studi sui ditteri larvevoridi. V. Macquartia chalconota Meig. su Chrysomela fastuosa Scop. (Coleoptera Chrysomelidae). Boll. Ist. Ent. Univ. Bologna, 23, 134.Google Scholar
Metalnikov, S. (1924). Phagocytose et réactions des cellules dans l'immunité. Ann. Inst. Pasteur, 38, 787826.Google Scholar
Metchnikoff, E. (1884). Ueber eine Sprosspilzkrankheit der Daphnien. Beitrag zur Lehre über den Kampf der Phagocyten gegen Krankheiterreger. Virchows Arch. 96, 177–95.Google Scholar
Metchnikoff, E. (1892). Leçons sur la pathologie comparée de l'inflammation. xi+239 pp. Paris: Masson.Google Scholar
Metchnikoff, E. (1893). Lectures on the Comparative Pathology of Inflammation. Engl. edn. (trans. , F. A. and Starling, E. H..) xii+218 pp. London: Kegan Paul.Google Scholar
Meyer, N. F. (1926 a). Biologie von Angitia fenestralis Holmgr. (Hymenoptera, Ichneumonidae), des Parasiten von Plutella maculipennis Curt. und einige Worte über Immunität der Insekten. Z. angew. Ent. 12, 139–52.Google Scholar
Meyer, N. F. (1926 b). Über die Immunität einiger Raupen ihren Parasiten, den Schlupfwespen, gegenüber. Z. angew. Ent. 12, 376–84.Google Scholar
Millemann, R. E. (1951). Echinocephalus pseudouncinatus n.sp., a nematode parasite of the abalone. J. Parasit. 37, 435–39.Google Scholar
Miller, M. A. (1943). Studies on the developmental stages and glycogen metabolism of Macracanthorhynchus hirudinaceus in the Japanese beetle larva. J. Morph. 73, 1941.Google Scholar
Moore, D. V. (1946 a). Studies on the life history and development of Moniliformis dubius Meyer, 1933. J. Parasit. 32, 257–71.Google Scholar
Moore, D. V. (1946 b). Studies on the life history and development of Macracanthorhynchus ingens Meyer, 1933, with a redescription of the adult worm. J. Parasit. 32, 387–99.Google Scholar
Moore, D. V. (1962). Morphology, life history, and development of the acanthocephalan Mediorhynchus grandis van Cleave, 1916. J. Parasit. 48, 7686.Google Scholar
Mrázek, A. (1907). Cestoden-Studien. I. Cysticercoiden aus Lumbriculus variegatus. Zool. Jb. (Abt. Syst.), 24. 591624.Google Scholar
Muesebeck, C. F. W. (1922). Zygobothria nidicola, an important parasite of the brown-tail moth. Bull. U.S. Dep. Agric. no. 1088, pp. 19.Google Scholar
Muesebeck, C. F. W. & Parker, D. L. (1933). Hyposoter disparis Viereck, an introduced ichneumonid parasite of the gipsy moth. J. Agric. Res. 46, 335–47.Google Scholar
Muldrew, J. A. (1953). The natural immunity of the larch sawfly (Pristiphora erichsonii (Htg.)) to the introduced parasite Mesoleius tenthredinis Morley, in Manitoba and Saskatchewan. Canad. J. Zool. 31, 313–32.Google Scholar
Myers, J. G. (1927). Natural enemies of the pear leaf-curling midge, Perrisia pyri, Bouché (Dipt., Cecidomyiidae). Bull. Ent. Res. 18, 129–38.Google Scholar
Neuhaus, W. (1940). Entwicklung und Biologie von Pleurogenes medians Olss. Zool. Jb. (Abt. Syst.), 74, 207–42.Google Scholar
Nielsen, J. C. (1909). Iagttagelser over entoparasitiske muscidelarver hos arthropoder. Ent. Medd. (2), 4, 1126.Google Scholar
Nishida, T. & Haramoto, F. (1953). Immunity of Dacus cucurbitae to attack by certain parasites of Dacus dorsalis. J. Econ. Ent. 46, 61–4.Google Scholar
Paillot, A. (1920). Sur la karyokinétose et les réactions similaires chez les vertébrés. C.R. Soc. Biol., Paris, 83, 427–8.Google Scholar
Paillot, A. (1923). Sur la variabilité du cycle évolutif d'un ichneumonide, parasite nouveau des larves de Neurotoma nemoralis L. C.R. Soc. Biol., Paris, 89, 1045–8.Google Scholar
Paillot, A. (1928). On the natural equilibrium of Pyrausta nubilalis Hb. Sci. Rep. Int. Corn Borer Invest. (1927-1928), pp. 77106.Google Scholar
Pantel, J. (1898). Le Thrixion halidayanum Rond. Essai monographique sur les caractères extérieurs, la biologie et l'anatomie d'une larve parasite du groupe des Tachinaires. Cellule, 15, 1290.Google Scholar
Pantel, J. (1902). Sur la biologie du Meigenia floralis Mg. (Dipt.). Bull. Soc. ent. Fr., Anneé 1902, 5660.Google Scholar
Pantel, J. (1909). Notes de neuropathologie comparée. Ganglions de larves d'insectes parasités par des larves d'insectes. Névraxe, 10, 269–97.Google Scholar
Pantel, J. (1910). Recherches sur les diptères à larves entomobies. 1. Caractères parasitiques aux points de vue biologique, éthologique et histologique. Cellule, 26, 25216.Google Scholar
Parker, H. L. (1931). Macrocentrus gifuensis Ashmead, a polyembryonic braconid parasite in the European corn borer. Tech. Bull. U.S. Dep. Agric. no. 230, pp. 162.Google Scholar
Pemberton, C. E. & Willard, H. F. (1918). A contribution to the biology of fruit-fly parasites in Hawaii. J. Agric. Res. 15, 419–66.Google Scholar
Petri, L. H. (1950). Life cycle of Physaloptera rara (Nematoda, Spiruroidea) with the cockroach (Blatta germanica) serving as the intermediate host. Trans. Kans. Acad. Sci. 53, 331–7.Google Scholar
Plotnikov, V. (1914). Contribution à la biologie de Bupalus piniarius L. (Lepidoptera, Geometridae) et de quelques uns de ses parasites. Rev. russe Ent. 14, 2343.Google Scholar
Prebble, M. L. (1935). Actia diffidens Curran, a parasite of Peronea variana (Fernald) in Cape Breton, Nova Scotia. Canad. J. Res. 12, 216–27.Google Scholar
Prell, H. (1914). Die Lebensweise der Raupenfliegen. Z. angew. Ent. 1, 172–95.Google Scholar
Prell, H. (1915). Zur Biologie der Tachinen Parasetigena segregata Rdi. und Panzeria rudis Fall. Z. angew. Ent. 2, 57148.Google Scholar
Prenant, M. (1959). Classe des Myzostomides. Grassé, P.P. Traité de Zoologie, 5, 714–84.Google Scholar
Puttler, B. (1961). Biology of Hyposoter exiguae (Hymenoptera: Ichneumonidae), a parasite of lepidopterous larvae. Ann. Ent. Soc. Amer. 54, 2530.Google Scholar
Puttler, B. & Bosch, R. (1959). Partial immunity of Laphygma exigua (Hübner) to the parasite Hyposoter exiguae (Viereck). J. Econ. Ent. 52, 327–9.Google Scholar
Ransom, H. B. (1913). The life history of Habronema muscae (Carter), a parasite of the horse transmitted by the house fly. Bull. U.S. Bur. Anim. Ind. no. 163, pp. 136.Google Scholar
Rennie, J. (1925). A mermithid parasite of Tipula paludosa, Meigen. Proc. R. phys. Soc. Edinb. 21, 13.Google Scholar
Rennie, J. & Sutherland, C. H. (1920). On the life history of Bucentes (Siphona) geniculata (Diptera: Tachinidae), parasite of Tipula paludosa (Diptera) and other species. Parasitology, 12, 199211.Google Scholar
Richards, O. W. & Davies, R. G. (1957). Imms’ A General Textbook of Entomology, 9th edn. x+886 pp. London: Methuen.Google Scholar
Ries, E. (1932). Experimentelle Symbiosestudien. I. Mycetomtransplantationen. Z. Morph. Ökol. Tiere, 25, 184234.Google Scholar
Rietra, E. (1932). Iets over den Bouw en de Levenswijze van Nemeritis canescens (Gravenhorst) als interne Parasiet van de Larve van Ephestia kuehniella Zeller. 120 pp. ’s-Hertogenbosch: Teulings’ Kon. Druk.Google Scholar
Rizki, M. T. M. (1957 a). Alterations in the haemocyte population of Drosophila melanogaster. J. Morph. 100, 437–58.Google Scholar
Rizki, M. T. M. (1957 b). Tumour formation in relation to metamorphosis in Drosophila melanogaster. J. Morph. 100, 459–72.Google Scholar
Rizki, M. T. M. & Rizki, R. M. (1959). Functional significance of the crystal cells in the larva of Drosophila melanogaster. J. Biophysic. Biochem. Cytol. 5, 235–40.Google Scholar
Rooseboom, M. (1937). Contribution à l'étude de la cytologie du sang de certains insectes, avec quelques considerations générales. Arch. néerl. Zool. 2, 432559.Google Scholar
Rothschild, M. (1936). The process of encystment of a cercaria parasitic in Limnaea tenera euphratica. Parasitology, 28, 5662.Google Scholar
Roubaud, E. (1906). Biologie larvaire et métamorphoses de Siphona cristata Fabr. Adaptation d'une tachinaire à un hôte aquatique diptère: un nouveau cas d'ectoparasitisme interne. C.R. Acad. Sci., Paris, 142, 1438–9.Google Scholar
Roubaud, E. & Descazeaux, J. (1921). Contribution à l'histoire de la mouche domestique comme agent vecteur des habronémoses d'equidés. Cycle évolutif et parasitisme de l'‘Habronema megastoma’ (Rudolphi, 1819) chez la mouche. Bull. Soc. Path. exot. 14, 471506.Google Scholar
Roubaud, E. & Descazeaux, J. (1922). Deuxième contribution à l'étude des mouches, dans leurs rapports avec l'évolution des habronémes d'equidés. Bull. Soc. Path. exot. 15, 9781001.Google Scholar
Rühm, W. (1956). Die Nematoden der Ipiden. Parasit. Schrift. 6, i-v, 1438.Google Scholar
Salt, G. (1938). Experimental studies in insect parasitism. VI. Host suitability. Bull. Ent. Res. 29, 223–46.Google Scholar
Salt, G. (1955). Experimental studies in insect parasitism. VIII. Host reactions following artificial parasitization. Proc. Roy. Soc. B, 144, 380–98.Google Scholar
Salt, G. (1956). Experimental studies in insect parasitism. IX. The reactions of a stick insect to an alien parasite. Proc. Roy. Soc. B, 146, 93108.Google Scholar
Salt, G. (1957). Experimental studies in insect parasitism. X. The reactions of some endopterygote insects to an alien parasite. Proc. Roy. Soc. B, 147, 167–84.Google Scholar
Salt, G. (1958). Parasite behaviour and the control of insect pests. Endeavour, 17, 145–8.Google Scholar
Salt, G. (1959). The fate of a braconid parasite, Rogas testaceus, in four species of hosts. Biologia, Lahore, 5, 8495.Google Scholar
Salt, G. (1960 a). Experimental studies in insect parasitism. XI. The haemocytic reaction of a caterpillar under varied conditions. Proc. Roy. Soc. B, 151, 446–67.Google Scholar
Salt, G. (1960 b). Surface of a parasite and the haemocytic reaction of its host. Nature, Lond., 188, 162–3.Google Scholar
Salt, G. (1961). The haemocytic reaction of insects to foreign bodies. The Cell and the Organism, pp. 175–92. Cambridge University Press.Google Scholar
Salt, G. (1963). Experimental studies in insect parasitism. XII. The reactions of six exopterygote insects to an alien parasite. J. Ins. Physiol. (In the Press.)Google Scholar
Schell, S. C. (1952). Tissue reactions of Blattella germanica L. to the developing larva of Physaloptera hispida Schell, 1950 (Nematoda: Spiruroidea). Trans. Amer. Micr. Soc. 71, 293302.Google Scholar
Schell, S. C. (1953). Four new species of Microtetrameres (Nematoda, Spiruroidea) from North American birds. Trans. Amer. Micr. Soc. 72, 227–36.Google Scholar
Schlegel-Oprecht, E. (1953). Versuche zur Auslösung von Mutationen bei der zoophagen Cynipide Pseudeucoila bochei Weld und Befunde über die Stammspezifische Abwehrreaktion des Wirtes Drosophila melanogaster. Z. indukt. Abstamm. -u. VererbLehre, 85, 245–81.Google Scholar
Schneider, A. (1871). On the development of Echinorhynchus gigas. Ann. Mag. Nat. Hist. (4), 7, 441–3.Google Scholar
Schneider, F. (1950). Die Abwehrreaktion des Insektenblutes und ihre Beeinflussung durch die Parasiten. Vjschr. naturf. Ges. Zurich, 95, 2244.Google Scholar
Schoonhoven, L. M. (1962). Diapause and the physiology of host-parasite synchronization in Bupalus piniarius L. (Geometridae) and Eucarcelia rutilla Vill. (Tachinidae). Arch. néerl. Zool. 15, 111–74.Google Scholar
Schwabe, C. W. (1951). Studies on Oxyspirura mansoni, the tropical eye-worm of poultry. II. Life history. Pacif. Sci. 5, 1835.Google Scholar
Seurat, L. G. (1911). Sur l'habitat et les migrations du Spirura talpae Gmel. ( = Spiroptera strumosa Rud.). C.R. Soc. Biol., Paris, 71, 606–8.Google Scholar
Seurat, L. G. (1912). Sur le cycle évolutif du spiroptère du chien. C.R. Acad. Sci., Paris, 154, 82–4.Google Scholar
Seurat, L. G. (1915). Sur les premiers stades évolutifs des spiroptères. C.R. Soc. Biol., Paris, 78, 561–5.Google Scholar
Seurat, L. G. (1916). Contributions à l'étude des formes larvaires des nématodes parasites hetéroxènes. Bull. sci. Fr. Belg. 49, 297377.Google Scholar
Shatoury, H. H. (1955). A genetically controlled malignant tumour in Drosophila. Arch. Entw. Mech. Org. 147, 496522.Google Scholar
Shteinberg, M. D. (1961). [Host-parasite relations in entomophagous insects. The possibility of the development of larvae of certain parasitic Hymenoptera in hosts new for them.] Abstract in Rev. appl. Ent. A, 50, 87.Google Scholar
Siebold, C. T. (1854). Ueber die Band- und Blasenwürmer. iv + 115 pp. Leipzig: Engelmann.Google Scholar
Silvestri, F. (1921). Contribuzioni alla conoscenza biologica degli imenotteri parassiti. V. Sviluppo del Platygaster dryomyiae Silv. Boll. Lab. Zool. Portici, 11, 299326.Google Scholar
Stephens, J. M. (1959). Immune responses of some insects to some bacterial antigens. Canad. J. Microbiol. 5, 203–28.Google Scholar
Stolte, H. A. (1962). Parasitismus und Parasiten der Oligochäten. Bronn's Klassen und Ordnungen des Tierreichs. Bd. 4, Abt. 3, Buch 3, Lief. 6, 1118–41.Google Scholar
Strickland, E. H. (1923). Biological notes on parasites of prairie cutworms. Bull. Dep. Agric. Can. no. 26, pp. 140.Google Scholar
Strickland, E. H. (1930). Phagocytosis of internal insect parasites. Nature, Lond., 126, 95.Google Scholar
Sussman, A. S. (1949). The functions of tyrosinase in insects. Quart. Rev. Biol. 24, 328–41.Google Scholar
Swales, W. E. (1936). Tetrameres crami Swales, 1933, a nematode parasite of ducks in Canada. Morphological and biological studies. Canad. J. Res. D, 14, 151–64.Google Scholar
Szidat, L. (1926). Der Ueberträger der Trematodenkrankheit unserer Legehühner. Zbl. Bakt. (Abt. I, Orig.), 99, 561–4.Google Scholar
Tauber, O. E. & Yeager, J. F. (1935). On total haemolymph (blood) cell counts of insects. I. Orthoptera, Odonata, Hemiptera and Homoptera. Ann. Ent. Soc. Amer. 28, 229–40.Google Scholar
Tauber, O. E. & Yeager, J. F. (1936). On total haemolymph (blood) cell counts of insects. II. Neuroptera, Coleoptera, Lepidoptera and Hymenoptera, Ann. Ent. Soc. Amer. 29, 112–8.Google Scholar
Thompson, W. R. (1913). Sur la spécificité des parasites entomophages. C.R. Soc. Biol., Paris, 75, 520–21, 559–60.Google Scholar
Thompson, W. R. (1915 a). Les rapports entre les phagocytes et les parasites chez les arthropodes. Bull. Soc. zool. Fr. 40, 6368.Google Scholar
Thompson, W. R. (1915 b). Sur le cycle évolutif de Fortisia foeda, diptère parasite d'un Lithobius. C.R. Soc. Biol., Paris, 78, 413–6.Google Scholar
Thompson, W. R. (1915 c). Sur la biologie de deux tachinaires à stade intramusculaire (Plagia trepida Meig. et Sturmia scutellata Rond.). C.R. Soc. Biol., Paris, 78, 717–21.Google Scholar
Thompson, W. R. (1928). A contribution to the study of the dipterous parasites of the european earwig (Forficula auricularia L.). Parasitology, 20, 123–58.Google Scholar
Thompson, W. R. (1930). Reaction of the phagocytes of arthropods to their internal insect parasites. Nature, Lond., 125, 565–6.Google Scholar
Thompson, W. R. (1934). The tachinid parasites of woodlice. Parasitology, 26, 378448.Google Scholar
Thompson, W. R. & Thompson, M. C. (1921). Studies of Zenillia roseanae B. & B. a parasite of the European corn borer. Proc. Ent. Soc. Wash. 23, 127–39.Google Scholar
Thompson, W. R. & Thompson, M. C. (1923). Masicera senilis, a parasite of the European corn borer (Pyrausta nubilalis). Proc. Ent. Soc. Wash. 25, 3344.Google Scholar
Thorpe, W. H. (1936). On a new type of respiratory interrelation between an insect (chalcid) parasite and its host (Coccidae). Parasitology, 28, 517–40.Google Scholar
Timberlake, P. H. (1912). Experimental parasitism: a study of the biology of Limnerium validum (Cresson). Tech. Ser. U.S. Bur. Ent. no. 19, pp. 7192.Google Scholar
Timon-David, J. (1955). Sur quelques métacercaires parasites d'odonates. Bull. Soc. linn. Provence 20, 17.Google Scholar
Timon-David, J. (1958). Rôle des insectes comme hôtes intermédiaires dans les cycles des trématodes digénétiques. Proc. 10th Int. Congr. Ent. 3, 657–62.Google Scholar
Tothill, J. D. (1922). The natural control of the fall webworm (Hyphantria cunea Drury) in Canada. Bull. Dep. Agric. Can. no. 3, pp. 1107.Google Scholar
Tripp, M. R. (1961). The fate of foreign materials experimentally introduced into the snail Australorbis glabratus. J. Parasit. 47, 745–51.Google Scholar
Walker, I. (1959). Die Abwehrreaktion des Wirtes Drosophila melanogaster gegen die zoophage Cynipide Pseudeucoila bochei Weld. Rev. suisse Zool. 66, 569632.Google Scholar
Welch, H. E. (1960). Hydromermis churchillensis n.sp. (Nematoda: Mermithidae) a parasite of Aedes communis (DeG.) from Churchill, Manitoba, with observations of its incidence and bionomics. Canad. J. Zool. 38, 465–74.Google Scholar
Wigglesworth, V. B. (1937). Wound healing in an insect (Rhodnius prolixus Hemiptera). J. Exp. Biol. 14, 364–81.Google Scholar
Wigglesworth, V. B. (1954). Growth and regeneration in the tracheal system of an insect, Rhodnius prolixus (Hemiptera). Quart. J. Micr. Sci. 95, 115–37.Google Scholar
Wigglesworth, V. B. (1956 a). The haemocytes and connective tissue formation in an insect, Rhodnius prolixus (Hemiptera). Quart. J. Micr. Sci. 97, 8998.Google Scholar
Wigglesworth, V. B. (1956 b). Formation and involution of striated muscle fibres during the growth and moulting cycles of Rhodnius prolixus. Quart. J. Micr. Sci. 97, 465–80.Google Scholar
Wigglesworth, V. B. (1959). Insect blood cells. Annual Rev. Ent. 4, 116.Google Scholar
Wigglesworth, V. B. (1961). The tracheae and tracheoles of insects. Proc. 11th Int. Congr. Ent. 1, 626–30.Google Scholar
Wittig, G. (1962). The pathology of insect blood cells: a review. Amer. Zoologist, 2, 257–73.Google Scholar
Wülker, G. (1923). Über Fortpflanzung und Entwicklung von Allantonema und verwandten Nematoden. Ergebn. Zool. 5, 389507.Google Scholar
Yeager, J. F. (1945). The blood picture of the southern armyworm (Prodenia eridania). J. Agric. Res. 71, 140.Google Scholar
Yen, C. H. (1938). Studies on Dirofilaria immitis Leidy, with special reference to the susceptibility of some Minnesota species of mosquitoes to the infection. J. Parasit. 24, 189205.Google Scholar