Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T11:01:27.425Z Has data issue: false hasContentIssue false

Hepatic fibrosis and gene expression changes induced by praziquantel treatment during immune modulation of Schistosoma japonicum infection

Published online by Cambridge University Press:  06 April 2009

T. F. Kresina
Affiliation:
Department of Medicine, Miriam Hospital, Brown University International Health Institute, Providence, RI 02906, USA
Qing He
Affiliation:
Department of Medicine, Miriam Hospital, Brown University International Health Institute, Providence, RI 02906, USA
S. Degli Esposti
Affiliation:
Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
M. A. Zern
Affiliation:
Department of Medicine, VA Medical Center and Roger Williams Medical Center, Providence, RI 02906, USA

Summary

In the present study fibrogenic gene expression was determined in murine Schistosoma japonicum infection during the progression of immune modulation of infection and following chemotherapy during the course of immune modulation. Histomorphometric analysis of granuloma size and collagen deposition revealed peak granuloma size in acute infection (5 weeks) and peak hepatic collagen content at 16 weeks of infection. Peak Type I collagen gene expression was concomitant with TGF-β1 gene expression at 8–11 weeks. Chemotherapy during either acute (9 weeks) or chronic (24, 28 weeks) infection resulted in increased collagen deposition and increased gene expression of Type I collagen and TGF-β1. However, chemotherapy at 14–16 weeks resulted in decreased levels of TGF-β1 gene expression and essentially minimal change in Type I collagen deposition and gene expression. These data indicate that chemotherapy of schistosomiasis japonica does not reverse hepatic fibrogenesis when administered in acute infection – when granuloma size is maximal – or in chronic infection. However, a beneficial effect on hepatic fibrogenesis is seen when chemotherapy is administered at 14–16 weeks post-infection, a time of decreasing granuloma size and maximal hepatic collagen content. Thus the ability to reverse schistosomal-induced hepatic fibrogenesis by chemotherapy may depend on disease stage.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annoni, G., Wiener, F. R. & Zern, M. A. (1991). Increased transforming growth factor-B1 gene expression in human liver disease. Journal of Hepatology 1, 16.Google Scholar
Barral-Netto, M., Barral, A., Brownell, C. E., Skeiky, Y. A. W., Ellingsworth, L., Twardzik, D. R. & Reed, S. (1992). Transforming growth factor B production in Leishmanial infection: a parasite escape mechanism. Science 257, 545–8.Google Scholar
Boros, D. L., Pelley, R. P. & Warren, K. S. (1975). Spontaneous modulation of granulomatous hypersensitivity in Schistosomiasis mansoni. Journal of Immunology 114, 1437–41.Google Scholar
Cheever, A. W. & Deb, S. (1989). Persistence of hepatic fibrosis and tissue eggs following treatment of Schistosoma japonicum infected mice. American Journal of Tropical Medicine and Hygiene 40, 620–8.Google Scholar
Chirgwin, J. M., Przybyla, A. E., Macdonald, R. J. & Rutter, W. J. (1979). Isolation of biologically active ribonucleic acid from sources enriched with ribonuclease. Biochemistry 18, 5294–9.Google Scholar
Czaja, M. J., Weiner, F. R., Flanders, K. C., Giambrone, M. A., Wind, R., Biempica, L. & Zern, M. A. (1989). In vitro and in vivo association of transforming growth factor-B1 with hepatic fibrosis. Journal of Cell Biology 108, 2477–82.Google Scholar
Derynck, R., Jarrett, J. A., Chey, E. Y., Eaton, D. H., Bell, J. R., Assoian, R. K., Roberts, A. B., Sporn, M. B. & Goelddel, D. V. (1985). Human transforming growth factor-beta cDNA sequence and expression in tumor cell lines. Nature, London 316, 701–5.Google Scholar
Domingo, E. O., Tiu, E., Peters, P. A., Warren, K. S., Mahmoud, A. A. F. & Houser, H. B. (1980). Morbidity in schistosomiasis japonica in relation to intensity of infection: study of a community in Leyte, Philippines. American Journal of Tropical Medicine and Hygiene 29, 858–67.Google Scholar
Dunn, M. A. & Kamel, R. (1981). Hepatic schistosomiasis. Hepatology 1, 653–61.Google Scholar
Garb, K. S., Stavitsky, A. B. & Mahmoud, A. A. F. (1981). Dynamics of antigen and mitogen induced responses in murine schistosomiasis japonica: in vitro comparison between hepatic granulomas and splenic cells. Journal of Immunology 127, 115–20.Google Scholar
Garb, K. S., Stavitsky, A. B., Olds, G. R., Tracy, J. W. & Mahmoud, A. A. F. (1982). Immune regulation in murine schistosomiasis japonica: Inhibition of in vitro antigen and mitogen-induced cellular responses by splenocytes culture supernates and by purified fractions from serum of chronically infected mice. Journal of Immunology 129, 2752–8.Google Scholar
Genovese, C., Rowe, D. & Kream, B. (1984). Construction of DNA sequences complementary to rat a2 mRNA and their use in studying the regulation of type I collagen synthesis by 1–25 dihydroxy vitamin D. Biochemistry 23, 6210–16.Google Scholar
Howe, C. C., Kath, R., Mancianti, M. L., Herlyn, M., Mueller, S. & Cristofalo, V. (1990). Expression and structure of human SPARC transcripts. Experimental Cell Research 188, 185–91.Google Scholar
Kehrl, J. G., Taylor, A., Kim, S. J. & Fauci, A. S. (1991). Transforming growth factor-beta is a potent negative regulator of human lymphocytes. Annals of the New York Academy of Sciences 628, 345–50.Google Scholar
Kresina, T. F. (1991). In vitro regulation of S. japonicum granuloma formation by an IL-2 antagonist. Parasitology 102, 243–9.Google Scholar
Kresina, T. F., He, Q. & Zern, M. A. (1982). Cytokines, hepatic fibrosis and schistosomiasis. Rhode Island Medicine 75, 191–5.Google Scholar
Lane, T. F., Sage, E. H. (1990). Functional mapping of SPARC: peptides from two distinct Ca++ binding sites modulate cell shape. Journal of Cell Biology 111, 3065–76.Google Scholar
Liau, G., Mudryj, M. & De Crombrugghe, B. (1985). Identification of the promoter and first exon of the mouse al (III) collagen gene. Journal of Biological Chemistry 260, 3773–7.Google Scholar
Mahmoud, A. A. F. (1984). Trematode Infections – schistosomiasis. In Tropical and Geographic Medicine (ed. Warren, K. S. & Mahmoud, A. A. F.), pp. 433447. New York: McGraw-Hill.Google Scholar
Miao, S., Bao-En, W., Annoni, G., Degli Esposti, S., Biempica, L. & Zern, M. A. (1990). Two rat models of hepatic fibrosis. A morphologic and molecular comparison. Laboratory Investigation 63, 467–75.Google Scholar
Mo, R., Yang, W., Sun, S., Lei, X., Ping, B. & Shen, X. (1984). Experimental therapy of hepatic fibrosis in schistosomiasis japonica. II. Effect of colchicine on hepatic fibrosis. Journal of Parasitology and Parasitic Diseases 2, 164–6.Google Scholar
Ohmae, H., Tanaka, M., Hayashi, M., Matsuzaki, Y., Kurosaki, Y., Blas, B. I., Portillo, G. G., Sy, O. S., Irie, Y. & Yasurgoka, K. (1992). Improvement of ultrasonographic and serologic changes in Schistosoma japonicum-infected patients after treatment with praziquantel. American Journal of Tropical Medicine and Hygiene 46, 99104.Google Scholar
Ohmae, H., Tanaka, M., Nara, T., Utsunomiyn, H., Tagucchi, H., Iriie, Y. & Yasuraoka, K. (1991). Serologic and ultrasonographic parameters of praziquantel treatment of hepatic fibrosis in Schistosoma japonicum infection. American Journal of Tropical Medicine and Hygiene 45, 350–9.Google Scholar
Olds, G. R., Griffin, A. & Kresina, T. F. (1985). Dynamics of collagen accumulation and polymorphism in murine Schistosoma japonicum. Gastroenterology 89, 617–24.Google Scholar
Olds, G. R. & Kresina, T. F. (1985). Network interactions in Schistosoma japonicum infection. Identification and characterization of a serologically distinct immunoregulatory auto-antiidiotypic antibody population. Journal of Clinical Investigation 76, 2338–47.Google Scholar
Olds, G. R. & Kresina, T. F. (1989). Immunoregulation of hepatic fibrosis in murine schistosomiasis japonica. Journal of Infectious Diseases 159, 798801.Google Scholar
Olds, G. R., Olveda, R., Tracy, J. W. & Mahmoud, A. A. F. (1982). Adoptive transfer of modulation of granuloma japonica by serum from chronically infected animals. Journal of Immunology 128, 1391–3.Google Scholar
Sadun, E. H., Lichtenberg, F., Von Erickson, D. G., Cheever, A. W., Bueding, E. E. & Anderson, J. S. (1974). Effects of chemotherapy on the evolution of schistosomiasis japonica in chimpanzees. American Journal of Tropical Medicine and Hygiene 23, 639–61.Google Scholar
Schwarzbauer, J. E., Tamkun, J. W., Lemischka, I. R. & Hynes, R. O. (1983). Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 35, 421–31.Google Scholar
Sher, A., Gazzinelli, R. T., Oswals, I. P., Clerici, M., Kullberg, M., Pearce, E. J., Berzofsky, J. A., Mosmann, T. R., James, S. L., Morse, H. C. & Shearer, G. M. (1992). Role of T-cell derived cytokines in the down regulation of immune responses in parasitic and retroviral infection. Immunological Reviews 127, 183204.Google Scholar
Swain, S. L., Bradley, L. M., Croft, M., Tonkongy, S., Atking, F., Weinberg, A., Duncan, D. D., Hedrick, S. M., Dutton, R. W. & Juston, G. (1991). Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunological Reviews 123, 115–29.Google Scholar
Wahl, S. M., McCartney-Francis, N. & Mergenhagen, S. E. (1989). Inflammatory and immunomodulatory roles of TGF-β. Immunology Today 10, 258–61.Google Scholar
Wang, S.-Y. & Gudas, L. J. (1983). Isolation of cDNA clones specific for collagen IV and laminin from mouse teratocarcinoma cells. Proceedings of the National Academy of Sciences, USA 80, 5880–8.Google Scholar
Wiener, F. R., Czaja, M. J., Giambrone, M. A., Takahash, S., Biempica, L. & Zern, M. A. (1987). Transcriptional and post-transcriptional effects of dexamethasone on albumin and procollagen messenger RNAs in murine schistosomiasis. Biochemistry 26, 1557–62.Google Scholar
Wiest, P. M., Wu, G., Zhang, S., Yuan, J., Peters, P. A. S., McGarvey, S. T., Tso, M., Olveda, G. R. & Olds, G. R. (1992). Morbidity due to schistosomiasis japonica in the People's Republic of China. Transactions of the Royal Society of Tropical Medicine and Hygiene 84, 4750.Google Scholar
Wong, G. C., Temple, P. A., Leary, A. C., Witekgiannolti, J. S., Yu-Chung, Y., Ciarlette, A. B., Chung, M., Murthop Kriz, R., Kaufman, R. J., Henick, R. M., Clark, S. C., Yanau, N., Yokota, H., Yamaha, M., Saito, M., Motoyoski, K. & Takaka, E. (1987). Human CSF-1 molecular cloning and expression of 4-lab cDNA encoding the human urinary protein. Science 235, 1504–8.Google Scholar
Wu, M. H., Wei, C. C., Xu, Z. Y., Yuan, H. C., Lian, W. N., Yang, Q. J., Chen, M., Jiang, Q. W., Wang, C. Z., Zhang, S. J., Lin, Z. D., Wei, R. M., Yuan, S. J., Hu, L. S. & Wu, Z. S. (1991). Comparison of the therapeutic efficiency and side effects of a single dose of levopraziquantel with mixed isomer-praziquantel in 278 cases of schistosomiasis japonica. American Journal of Tropical Medicine and Hygiene 45, 345–9.Google Scholar
Yamada, K. M. (1991). Fibronectin and other cell interactive glycoproteins. In Cell Biology of the Extracellular Matrix (ed. Hay, E. D.). 2nd Edn, pp. 111146. New York: Plenum Press.Google Scholar
Zern, M. A., Chakraborty, P. R., Ruiz-Opazo, N., Yap, S. H. & Shakritz, D. A. (1983). Development and use of a rat albumin cDNA clone to evaluate the effect of chronic ethanol administration of hepatic protein synthesis. Hepatology 3, 317–22.Google Scholar