Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T19:43:12.868Z Has data issue: false hasContentIssue false

Identification and characterization of two repetitive non-variable antigens from African trypanosomes which are recognized early during infection

Published online by Cambridge University Press:  06 April 2009

N. Müller
Affiliation:
Institute of General Microbiology, University of Berne, Baltzerstrasse 4, 3012 Berne, Switzerland
A. Hemphill
Affiliation:
Institute of General Microbiology, University of Berne, Baltzerstrasse 4, 3012 Berne, Switzerland
M. Imboden
Affiliation:
Institute of General Microbiology, University of Berne, Baltzerstrasse 4, 3012 Berne, Switzerland
G. Duvallet
Affiliation:
Centre de Recherches sur les Trypanosomes Animales (CRTA), BP 454, Bobo-Dioulasso 01, Burkina Faso
R. H. Dwinger
Affiliation:
International Trypanotolerance Centre (ITC), PMB 14, Banjul, The, Gambia
T. Seebeck
Affiliation:
Institute of General Microbiology, University of Berne, Baltzerstrasse 4, 3012 Berne, Switzerland

Summary

The present paper describes two repetitive proteins representing common antigens of African trypanosomes which are non-variant and which are recognized early in infection by the host immune system. These antigens were identified by their ability to immunoreact with bovine serum taken during the early phase of a cyclic trypanosomal infection. Screening of a cDNA library from T. b. gambiense with such early infection serum identified a protein which contains a repetitive motif consisting of 68 amino acid repeat units (GM6). Immunofluorescence and immunogold electron microscopy revealed that GM6 is located on fibres which connect the microtubules of the membrane skeleton with the flagellum. A second repetitive antigen detected by this serum is MARP1 (microtubule-associated repetitive protein 1), a protein previously characterized in this laboratory as a high-molecular weight component of the membrane skeleton, which consists of more than 50 tandemly repeated, near-identical 38 amino acid repeat units. Beta-galactosidase fusion products of both proteins demonstrated a strong immunoreactivity with sera from T. b. brucei and T. congolense-infected cattle. The result from this preliminary immunological evaluation indicates a high immunodiagnostic sensititivy (90%) of the two recombinant antigens which make them interesting candidates for immunodiagnosis of trypanosomiasis in cattle.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, D. A., Mottram, J., Selkirk, M. & Agabian, N. (1989). Two variant surface glycoprotein genes distinguish between different substrains of Trypanosoma brucei gambiense. Molecular and Biochemical Parasitology 34, 135–46.CrossRefGoogle ScholarPubMed
Brun, R. & SchöNenberger, M. (1979). Cultivation and in vitro cloning of procyclic culture forms of Trypanosoma brucei in semi-defined medium. Acta Tropica 36, 289–92.Google ScholarPubMed
Burgess, D. E. & Jerrells, T. (1985). Molecular identity and location of invariant antigens on Trypanosoma brucei rhodesiense defined with monoclonal antibodies reactive with sera from trypanosomiasis patients. Infection and Immunity 50, 893–9.CrossRefGoogle Scholar
Cross, G. A. M. (1990). Cellular and genetic aspects of antigenic variation in trypanosomes. Annual Reviews of Immunology 8, 83110.CrossRefGoogle ScholarPubMed
De Gee, A. L., Levine, R. F. & Mansfield, J. M. (1988). Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein specific immune response. Journal of Immunology 140, 283–8.CrossRefGoogle Scholar
Duvallet, G. (1984). Variants antigénetiques détectés après transmission cyclique d'un clone de Trypanosoma brucei brucei chez des bovins trypanosensibles et résistants. Revue d'elevage et de Médicine vétérinaire des Pays tropicaux 37, 277–87.Google Scholar
Frommel, T. O. & Balber, A. E. (1987). Trypanosoma brucei brucei, T. brucei gambiense and T. brucei rhodesiense: common glycoproteins and glycoprotein heterogeneity. Experimental Parasitology 63, 3241.CrossRefGoogle Scholar
Goldstein, L. S. B., Laymon, R. A. & Mcintosh, J. R. (1986). A microtubule associated protein in Drosophila melanogaster: identification, characterization, and isolation of coding sequences. Journal of Cell Biology 102, 2076–87.CrossRefGoogle ScholarPubMed
Hemphill, A., Lawson, D. & Seebeck, T. (1991). The cytoskeletal architecture of Trypanosoma brucei. Journal of Parasitology 77, 603–12.CrossRefGoogle ScholarPubMed
Hide, G., Gray, A., Harrison, C. M. & Tait, A. (1989). Identification of an epidermal growth factor receptor homologue in trypanosomes. Molecular and Biochemical Parasitology 36, 51–9.CrossRefGoogle ScholarPubMed
Hohn, B. (1980). In vitro packaging of λ and cosmid DNA. Methods in Enzymology 68, 299309.CrossRefGoogle Scholar
Hoft, D. F., Kim, K. S., Otsu, K., Moser, D. R., Yost, W. J., Blumin, H., Donelson, J. E. & Kirchhoff, L. V. (1989). Trypanosoma cruzi expresses diverse repetitive protein antigens. Infection and Immunity 57, 1959–67.CrossRefGoogle ScholarPubMed
Hyunh, T. V., Young, R. A. & Davis, R. W. (1985). Construction and screening cDNA libraries λgt10 and λgt11. In DNA Cloning 1 (ed. Glover, D. M.), pp. 4978. Oxford: JRL Press.Google Scholar
Ibanez, C. F., Affranchinio, J. L., Macina, R. A., Reyes, M. B., Leguizamon, S., Camargo, M. E., Aslund, L., Pettersson, U. & Frasch, A. C. C. (1988). Multiple Trypanosoma cruzi antigens containing tandemly repetitive amino acid sequence motifs. Molecular and Biochemical Parasitology 30, 2734.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Lawson, D. (1983). Epinemin: a new protein associated with vimentin filaments in non-neuronal cells. Journal of Cell Biology 97, 1891–905.CrossRefGoogle Scholar
Mowatt, M. R. & Clayton, C. E. (1987). Developmental regulation of a novel repetitive protein of Trypanosoma brucei. Molecular and Cellular Biology 7, 2838–44.Google ScholarPubMed
Norrander, T., Kempe, T. & Messing, J. (1983). Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene 26, 101–6.CrossRefGoogle ScholarPubMed
Parsons, M. N. & Nielsen, B. (1990). Active transport of 2-deoxy-D-glucose in Trypanosoma brucei procyclic forms. Molecular and Biochemical Parasitology 42, 197204.CrossRefGoogle ScholarPubMed
Pinder, M. (1984). Trypanosoma congolense: Genetic control of resistance to infection in mice. Experimental Parasitology 57, 185–91.CrossRefGoogle ScholarPubMed
Pinder, M., Chassin, P. & Fumoux, F. (1986). Mechanisms of self-cure from Trypanosoma congolense infection in mice. Journal of Immunology 136, 1427–34.CrossRefGoogle ScholarPubMed
Roditi, I., Carrington, M. & Turner, M. (1987). Expression of a polypeptide containing a dipeptide repeat is confined to the insect stage of Trypanosoma brucei. Nature, London 325, 272–4.CrossRefGoogle Scholar
Sambrook, J., Fritsch, E. F. & Maniatis, T. (1989). Molecular Cloning. 2nd Edn.Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, USA 74, 5463–7.CrossRefGoogle ScholarPubMed
Schofield, L. (1991). On the function of repetitive domains in protein antigens of Plasmodium and other eukariotic parasites. Parasitology Today 7, 99105.CrossRefGoogle Scholar
Schneider, A., Hemphill, A., Wyler, T. & Seebeck, T. (1988). Large microtubule-associated protein of T. brucei has tandemly repeated, near-identical sequences. Science 241, 459–62.CrossRefGoogle ScholarPubMed
Seed, J. R. & Sechelski, J. (1987). The role of antibody in African trypanosomiasis. Journal of Parasitology 73, 840–2.CrossRefGoogle ScholarPubMed
Shapiro, S. Z. & Murray, M. (1982). African trypanosome antigens recognized during the course of infection in N'Dama and Zebu cattle. Infection and Immunity 35, 410–16.CrossRefGoogle ScholarPubMed
SOUTO-Padron, T., Reyes, M. B., Leguizamon, S., Campetella, O. E., Frasch, A. C. C. & De Zouza, W. (1989). Trypanosoma cruzi proteins which are antigenic during human infections are located in defined regions of the parasite. European Journal of Cell Biology 50, 272–8.Google ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle ScholarPubMed
Vogel, M., Gottstein, B., Müller, N. & Seebeck, T. (1988). Production of a recombinant antigen of Echinococcus multilocularis with high immunodiagnostic sensitivity and specificity. Molecular and Biochemical Parasitology 31, 117–26.CrossRefGoogle ScholarPubMed
Wallis, A. E. & Mcmaster, W. R. (1987). Identification of Leishmania genes encoding proteins containing tandemly repeating proteins. Journal of Experimental Medicine 166, 1814–24.CrossRefGoogle ScholarPubMed
Webster, P. & Shapiro, S. Z. (1990). Trypanosoma brucei – a membrane-associated protein in coated endocytotic vesicles. Experimental Parasitology 70, 154–63.CrossRefGoogle ScholarPubMed