Journal of Fluid Mechanics



Numerical simulation of a concentrated emulsion in shear flow


M.  Loewenberg a1p1 and E. J.  Hinch a1
a1 Department of Applied Mathematics and Theoretical Physics, The University of Cambridge, Silver Street, Cambridge CB3 9EW, UK

Article author query
loewenberg m   [Google Scholar] 
hinch ej   [Google Scholar] 
 

Abstract

A three-dimensional computer simulation of a concentrated emulsion in shear flow has been developed for low-Reynolds-number finite-capillary-number conditions. Numerical results have been obtained using an efficient boundary integral formulation with periodic boundary conditions and up to twelve drops in each periodically replicated unit cell. Calculations have been performed over a range of capillary numbers where drop deformation is significant up to the value where drop breakup is imminent. Results have been obtained for dispersed-phase volume fractions up to 30% and dispersed- to continuous-phase viscosity ratios in the range of 0 to 5. The results reveal a complex rheology with pronounced shear thinning and large normal stresses that is associated with an anisotropic microstructure that results from the alignment of deformed drops in the flow direction. The viscosity of an emulsion is only a moderately increasing function of the dispersed-phase volume fraction, in contrast to suspensions of rigid particles or undeformed drops. Unlike rigid particles, deformable drops do not form large clusters.

(Published Online April 26 2006)
(Received August 22 1995)
(Revised February 14 1996)


Correspondence:
p1 Present address: Department of Chemical Engineering, Yale University, New Haven, Connecticut 06520-2159, USA.


Metrics
Related Content