Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T15:05:16.576Z Has data issue: false hasContentIssue false

The growth and breakdown of streamwise vortices in the presence of a wall

Published online by Cambridge University Press:  21 April 2006

Jerry D. Swearingen
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles, CA 90089, USA
Ron F. Blackwelder
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles, CA 90089, USA

Abstract

The growth, breakdown, and transition to turbulence of counter-rotating streamwise vortices, generated via a Görtler instability mechanism, was used to experimentally model the eddy structures found in transitional and turbulent flat-plate boundary layers. The naturally occurring vortices have been studied using smoke-wire visualization and multiple-probe hot-wire rakes. Results show that low-speed regions are formed between the vortices as low-momentum fluid is removed away from the wall. The low-speed regions grow in the normal direction faster than a nominally Blasius boundary layer and create strongly inflexional normal and spanwise profiles of the streamwise velocity component. Instability oscillations develop on these unstable profiles that scale with the local shear-layer thickness and velocity difference. Contrary to expectations however, the spatial scales of the temporal velocity fluctuations correlate better with the velocity gradient in the spanwise direction than with the normal velocity gradient. The nonlinear growth of the oscillations is quite rapid and breakdown into turbulence occurs within a short timescale.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, N. 1974 Geophys 39, 69.
Aihara, Y. & Koyama, H. 1981 Trans. Japan Soc. Aeron. Space Sci. 24, 78.
Aihara, Y. & Sonoda, T. 1981 AIAA Paper 81–0197.
Bakewell, H. P. & Lumley, J. L. 1967 Phys. Fluids 10, 1880.
Bippes, H. 1972 Heidel. Akad. Wiss., Naturwiss. Kl., Sitzungsber. 3, 103.
Blackwelder, R. F. 1983 Phys. Fluids 26, 2807.
Blackwelder, R. F. & Eckelmann, H. 1979 J. Fluid Mech. 94, 577.
Blackwelder, R. F. & Haritonidis, J. H. 1983 J. Fluid Mech. 132, 87.
Blackwelder, R. F. & Kaplan, R. E. 1976 J. Fluid Mech. 76, 89.
Brown, G. L. & Thomas, A. S. W. 1977 Phys. Fluids Suppl. 20, S243.
Burg, J. P. 1967 Maximum entropy spectral analysis. Presented at the 37th Annual Intl Meeting, Society of Exploration Geophysicists, Oklahoma City, Oklahoma, 31 October 1967.
Cantwell, B. J., Coles, D. E. & Dimotakis, P. E. 1978 J. Fluid Mech. 87, 641.
Coles, D. 1965 J. Fluid Mech. 21, 385.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Corke, T., Koga, D., Drubka, R. & Nagib, H. 1980 In Proc. ICIASF, IEEE Publication 77CH1251-8 AES, p. 74.
Dryden, H. L. 1948 In Adv. Appl. Mech. I., p. 1. Academic Press.
Floryan, J. M. & Saric, W. S. 1982 AIAA J. 20, 316.
GÖrtler, H. 1940 Nachr. Wiss. Ges. Göttingen Math.-Phys. Kl. 2, 1.
Grass, A. J. 1971 J. Fluid Mech. 50, 233.
Hall, P. 1983 J. Fluid Mech. 130, 41.
HÄmmerlin, G. 1955 J. Rat. Mech. Anal. 4, 279.
Haritonidis, J. H. 1978 On the wave packets and streaks associated with the transitional spot. Ph.D. dissertation, University of Southern California.
Jeans, A. H. & Johnston, J. P. 1983 Stanford University Rep. MD-40.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 J. Fluid Mech. 12, 1.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Komoda, H. 1967 Phys. Fluids Suppl. 10, S87.
Kovasnay, L. S. G., Komoda, H. & Vasudeva, B. R. 1962 In Proc. Heat Transfer and Fluid Mech. Inst., p. 1. Stanford University Press.
Liepmann, H. W. 1945 NACAA Wartime Rep. W-87.
Mattingly, G. E. & Criminale, W. O. 1972 J. Fluid Mech. 51, 233.
Michalke, A. 1965 J. Fluid Mech. 23, 521.
Moin, P. & Kim, J. 1982 J. Fluid Mech. 118, 341.
Morkovin, M. V. 1979 NASA Contractor Rep. 159061.
Nishioka, M. & Asai, M. 1984 In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi), p. 87. Elsevier.
Nishioka, M., Asai, M. & Iida, S. 1980 In Laminar-Turbulent Transition (ed. R. Eppler & H. Fasel), p. 37. Springer.
Sato, H. & Kuriki, K. 1961 J. Fluid Mech. 11, 321.
Smith, A. M. O. 1955 Q. Appl. Maths 13, 233.
Smith, C. R. 1984 In Proc. Eighth Symp. on Turbulence (ed. G. K. Patterson & J. L. Zakin), Dept. of Chem. Engng, University of Missouri-Rolla.
Smith, C. R. & Abbott, D. E. (eds) 1979 Coherent Structures of Turbulent Boundary Layers. Leheigh University.
Smith, C. R. & Schwartz, S. P. 1983 Phys. Fluids 26, 641.
Swearingen, J. D. & Blackwelder, R. F. 1986 AIAA J. 24, 1706.
Tani, I. 1962 J. Geophys. Res. 67, 3075.
Tani, I. & Sakagami, J. 1962 In Proc. Intl Council of the Aerospace Sciences, Stockholm (ed. M. Roy), p. 391. Spartan.
Walsh, M. J. 1982 Prog. Astronaut. Aero. 72, 168.
White, F. M. 1974 Viscous Fluid Flow. McGraw-Hill.
Winoto, S. H. & Crane, R. I. 1980 Intl J. Heat and Fluid Flow 2, 221.
Wygnanski, I., Haritonidis, J. H. & Kaplan, R. E. 1979 J. Fluid Mech. 92, 505.