Journal of Fluid Mechanics

Stability of a vortex street of finite vortices

P. G.  Saffman a1 and J. C.  Schatzman a1
a1 Applied Mathematics, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Article author query
saffman pg   [Google Scholar] 
schatzman jc   [Google Scholar] 


The stability of the finite-area Kármán ‘vortex street’ to two-dimensional disturbances is determined. It is shown that for vortices of finite size there exists a finite range of spacing ratio κ for which the array is stable to infinitesimal disturbances. As the vortex size approaches zero, the range narrows to zero width about the classical von Kármán value of 0·281.

(Published Online April 20 2006)
(Received April 2 1981)
(Revised September 1 1981)