The ANZIAM Journal

Research Article

The time fractional diffusion equation and the advection-dispersion equation

F. Huanga1a2 and F. Liua1a3

a1 Department of Mathematics, Xiamen University, Xiamen 361005, China; e-mail: fwliu@xmu.edu.cn.

a2 School of Mathematical Sciences, South China University of Technology, Guangzhou 510640, China; e-mail: huangfh@scut.edu.cn.

a3 School of Mathematical Sciences, Queensland University of Technology, Qld 4001, Australia; e-mail: f.liu@qut.edu.au.

Abstract

The time fractional diffusion equation with appropriate initial and boundary conditions in an n-dimensional whole-space and half-space is considered. Its solution has been obtained in terms of Green functions by Schneider and Wyss. For the problem in whole-space, an explicit representation of the Green functions can also be obtained. However, an explicit representation of the Green functions for the problem in half-space is difficult to determine, except in the special cases α = 1 with arbitrary n, or n = 1 with arbitrary α. In this paper, we solve these problems. By investigating the explicit relationship between the Green functions of the problem with initial conditions in whole-space and that of the same problem with initial and boundary conditions in half-space, an explicit expression for the Green functions corresponding to the latter can be derived in terms of Fox functions. We also extend some results of Liu, Anh, Turner and Zhuang concerning the advection-dispersion equation and obtain its solution in half-space and in a bounded space domain.

(Received October 30 2003)

(Revised June 21 2004)