Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T09:30:37.867Z Has data issue: false hasContentIssue false

Axisymmetric inertial oscillations of a fluid in a rotating spherical container

Published online by Cambridge University Press:  29 March 2006

Keith D. Aldridge
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts
Alar Toomre
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

This paper describes an experiment performed with a fluid-filled sphere whose rotation speed about a fixed axis was forcibly varied in a slight but sinusoidal manner about a non-zero mean value. The object of this experiment was both to excite axisymmetric inertial eigen-oscillations within the relatively low viscosity fluid through the mild pumping action of the oscillatory Ekman boundary layer near the wall, and to measure and compare with theory some of the properties of such modes.

Seven distinct fluid resonances were detected via pressure measurements made along the axis for various ratios of the excitation to the mean rotation frequency. For the three most pronounced of those modes, the observed frequency ratios agree within ½ of 1% with the corresponding ratios predicted from linear, small viscosity theory. The response amplitudes at the various resonances and the rates of decay upon switching off the excitation also compare favourably with theory, although the observed amplitudes are systematically lower and the decays more rapid by a few per cent to several tens of per cent.

The theory referred to above is largely that of Greenspan (1964, 1968). It is in part rederived here from energy considerations.

Type
Research Article
Copyright
© 1969 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellhouse, B. J. & Schultz, D. L. 1964 Aero. Res. Counc. R & M, no. 3445.
Bidwell, J. M. 1951 NACA TN 2571.
Bradshaw, P. 1959 J. Aero Space Sci. 26, 841.
Brown, G. L. 1967 Heat Trans. Fluid Mech. Inst. Proc.
Clauser, F. H. 1954 J. Aero Sci. 21, 91.
Coles, D. 1953 Ph.D. Thesis, California Inst. of Tech.
Dhawan, S. 1953 NACA TR 1121.
Drinkuth, R. H. & Pierce, F. J. 1966 Rev. Sci. Instrum. 37, 740.
Duffy, J. & Norbury, J. F. 1967 J. Roy. Aero Soc. 71, 55.
Fage, A. & Falkner, V. M. 1930 Proc. Roy. Soc. A, 129, 378.
Ferriss, D. H. 1965 Aero. Res. Counc. CP 831.
Good, M. C. & Joubert, P. N. 1968 J. Fluid Mech. 31, 547.
Hakkinen, R. J. 1955 NACA TN 3486.
Headley, J. W. 1966 AIAA J. 4, 1862.
Head, M. R. & Rechenberg, I. 1962 J. Fluid Mech. 14, 1.
Johnston, J. P. 1957 M.I.T. Gas Turbine Lab. Rep. 39.
Joubert, P. N., Perry, A. E. & Brown, K. C. 1967 Fluid Mechanics of Internal Flow, Gino Sovran (ed.), Amsterdam: Elsevier.
Kempf, G. 1929 Werft, Reed. Hafen, 10, 234, 247.
Liepmann, H. W. & Skinner, G. T. 1954 NACA TN 3268.
Ludwieg, H. 1949 Ing. Arch. 17, 207, also NACA TM 1284.
Ludwieg, H. & Tillmann, W. 1949 Ing. Arch. 17, 288, also NACA TM 1285.
Meyer, R. F. 1966 Nat. Res. Counc. Can. Rep. LR-457.
Naleid, J. F. & Thompson, M. J. 1961 J. Aero. Space Sci. 28, 940.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Perry, A. E. 1966 J. Fluid Mech. 26, 481.
Perry, A. E., Bell, J. B. & Joubert, P. N. 1966 J. Fluid Mech. 25, 299.
Perry, A. E. & Joubert, P. N. 1965 J. Fluid Mech. 22, 285.
Preston, J. H. 1954 J. Roy. Aero. Soc. 58, 109.
Rajaratnam, N. & Froelich, C. P. 1967 J. Roy. Aero. Soc. 71, 52.
Rechenberg, I. 1963 Z. Flugwiss. 11, 429.
Schultz-Grunow, F. 1940 Luftfahrtforschung, 17, 239.
Schlichting, H. 1962 Boundary Layer Theory, 4th ed. New York: McGraw-Hill.
Smith, P. D. 1965 Ph.D. Thesis, Univ. of Lond.
Smith, D. W. & Walker, J. H. 1959 NASA R 26.
Wyatt, L. A. & East, L. F. 1966 RAE Tech. Rep. 66027.