Hostname: page-component-7c8c6479df-7qhmt Total loading time: 0 Render date: 2024-03-29T00:53:28.593Z Has data issue: false hasContentIssue false

Determining modes and fractal dimension of turbulent flows

Published online by Cambridge University Press:  20 April 2006

P. Constantin
Affiliation:
Indiana University, Bloomington, IN 47405
C. Foias
Affiliation:
Indiana University, Bloomington, IN 47405
O. P. Manley
Affiliation:
U.S. Department of Energy, Washington DC 20545
R. Temam
Affiliation:
Laboratoire d'Analyse Numérique, CNRS and Université Paris-Sud, 91405 Orsay

Abstract

Research on the abstract properties of the Navier–Stokes equations in three dimensions has cast a new light on the time-asymptotic approximate solutions of those equations. Here heuristic arguments, based on the rigorous results of that research, are used to show the intimate relationship between the sufficient number of degrees of freedom describing fluid flow and the bound on the fractal dimension of the Navier–Stokes attractor. In particular it is demonstrated how the conventional estimate of the number of degrees of freedom, based on purely physical and dimensional arguments, can be obtained from the properties of the Navier–Stokes equation. Also the Reynolds-number dependence of the sufficient number of degrees of freedom and of the dimension of the attractor in function space is elucidated.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babin, A. V. & Vishik M. I.1983 Attractors of partial differential equations of evolution and estimates of their dimensions. Usp. Math. Nauk 38, 133 (in Russian).Google Scholar
Constantin, P. & Foias C.1983 Global Lyapounov exponents, Kaplan—Yorke formulas and the dimension of the attractor for 2D Navier—Stokes equations. Commun. Pure Applied Maths (To appear).Google Scholar
Constantin P., Foias C., Manley, O. P. & Temam R.1984a C.R. Acad. Sci. Paris 297, 599.
Constantin P., Foias, C. & Temam R.1984b Attractors representing turbulent flows. Mem. Am. Math. Soc. (to appear).Google Scholar
Constantin P., Foias, C. & Temam R.1984c On the large time Galerkin approximation of the Navier—Stokes equations. SIAM J. Numer. Anal. 21, 615.Google Scholar
Farmer J. D., Ott, E. & Yorke J. A.1983 Physica 7D, 153.
Foias C., Manley O. P., Temam, R. & Treve, Y. M. 1983 Physica 9D, 157.
Franceschini, V. & Tebaldi C.1981 J. Stat. Phys. 25, 397.
Frisch U., Sulem, P.-L. & Nelkin M.1978 J. Fluid Mech. 87, 719.
Kaplan, J. & Yorke J. A.1979 Chaotic behavior of multidimensional difference equations. In Functional Differential Equations and Approximation of Fixed Points (ed. H. O. Peitgen & H. O. Walther). Lecture Notes in Mathematics, vol. 730. Springer.
Landau, L. D. & Lifshitz E. M.1959 Fluid Mechanics. Addison-Wesley.
Lanford O. E.1976 Qualitative and statistical theory of dissipative systems. CIME School of Statistical Mechanics.Google Scholar
Leib E. H.1984 Commun. Math. Phys. 92, 473.
Mandelbrot B.1977 Fractals: Form, Chance and Dimension. Freeman.
Metivier G.1978 J. Math. Pures Appl. 57, 133.
Moffatt H. K.1981 J. Fluid Mech. 106, 27.
Morse, P. M. & Feshbach H.1953 Methods of Theoretical Physics. McGraw-Hill.
Oseledec V. I.1968 A multiplicative theorem. Lyapounov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197.Google Scholar
Pars L. A.1965 A Treatise on Analytical Dynamics. Heineman.
Russell D. A., Hanson, J. B. & Ott E.1980 Phys. Rev. Lett. 45, 1175.
Temam R.1983 Navier—Stokes Equations and Nonlinear Functional Analysis. NSF/CBMS Reg. Conf. Ser. Appl. Maths, SIAM.
Treve Y. M.1981 J. Comp. Phys. 41, 217.
Treve, Y. M. & Manley O. P.1982 Physica 4D, 319.